• توجه: در صورتی که از کاربران قدیمی ایران انجمن هستید و امکان ورود به سایت را ندارید، میتوانید با آیدی altin_admin@ در تلگرام تماس حاصل نمایید.

*** آموزش سخت افزار ***

Mehdi

متخصص بخش سخت افزار
با سلام خدمت همه ی دوستان عزیز

در این تاپیک قصد داریم به آموزش سخت افزار بپردازیم

مدت ها بود که میخواستم همچین تاپیکی رو ایجاد کنم اما از اونجایی که نوشتن همچین مطلب آموزشی با در نظر گرفتن اینکه مطلب کامل باشه بسیار وقت گیر هست به دنبال منبعی بودم که کامل و جامع باشه.

منابع: www.srco.ir


 
آخرین ویرایش:

Mehdi

متخصص بخش سخت افزار
قسمت اول:قسمت های اصلی یک رایانه - ورودی/ خروجی ها - انواع پورت ها و اتصالات

آيا تا به حال برايتان پيش آمده است كه كار نسبتاً ضروري با سيستم خود داشته باشيد و به محض زدن دكمه Power ببينيد كه دستگاه روشن نمي شود و آيا تا به حال برايتان پيش آمده است كه دستگاهتان با فاصله زماني كوتاهي هنگ كند و يا صدا و يا احياناً دودي از آن خارج شود.

در اين بخش در نظر داريم به بررسي قسمت هاي مختلف رايانه بپردازيم و در آينده به تفصيل در مورد هر يك توضيح دهيم. تا آشنايي جزيي و مؤثري با هر يك از قسمت ها پيدا كنيم و پاره اي از مشكلات رايانه خود را بهتر شناسايي نموده و در صدد رفع آن برآييم.

قسمت هاي اصلي يك رايانه:


CPU- يا پردازنده: اين قطعه به عنوان مغز رايانه ناميده مي شود و مسئوليت كنترل تمام محاسبات، عمليات و قسمت هاي مختلف را بر عهده دارد.

-حافظه: حافظه رايانه براي ذخيره اطلاعات به كار مي رود. حافظه با ريزپردازنده در ارتباط مي باشد، بنابر اين از سرعت بالايي برخوردار است. در رايانه از چندين نوع حافظه استفاده مي شود. Virtual- Caching- BIOS- ROM- RAM

- منبع تغذيه يا Power Supply :اين قسمت از رايانه جريان الكتريكي مورد نياز در رايانه را تنظيم نموده و مقدار آن راتأمين مي كند.

-هارديسك: يك حافظه با ظرفيت بالا و دائم مي باشد كه اطلاعات و برنامه ها را دربرمي گيرد.

-برد اصلي يا Mother Board :برد اصلي رايانه است كه تمام قطعات بر روي آن نصب مي شوند. پردازشگر و حافظه به طور مستقيم بر روي برد اصلي نصب خواهند شد. ولي ممكن است بعضي از قطعات به صورت غيرمستقيم به برد وصل شوند. مانند كارت صدا كه مي تواند به صورت يك برد مجزا باشد و از طريق اسلات به برد اصلي متصل است.

-كارت صدا يا Sound Card :كارت صدا سينگال هاي آنالوگ صوتي را به اطلاعات ديجيتال و برعكس تبديل مي كند و آنها را ضبط و پخش مي كند.

-كارت گرافيكي يا :Graphic Cards اطلاعات را به گونه اي تبديل مي كند كه قابل نمايش بر روي مانيتور باشد.

-كنترل كننده Integrated Drive Electronics IDE :اين قطعه اينترفيس اوليه براي CD ROM، فلاپي ديسك و هارد مي باشد.

- اينترفيس :SCSI Small Computer براي اضافه نمودن دستگاه هاي اضافي مانند هارد و اسكنر مي باشد.

- گذرگاه Interconnect PeriPheral Component PCI :اين قطعه رايج ترين شيوه جهت اتصال يك عنصر ديگر به رايانه است كارت هاي PCI از طريق اسلات ها به برد اصلي متصل است.

- پورت Accelerated Graphics Port AGP :اين قطعه براي اتصال سرعت بالا از كارت گرافيكي به رايانه است.

ورودي ها و خروجي ها

- مانيتور Monitor: جهت نمايش اطلاعات رايانه به كار مي رود. نمايش تصاوير از تركيب سه رنگ قرمز، سبز و آبي بوجود مي آيد.

- صفحه كليد Key Board :براي ورود اطلاعات به كار مي رود.

- ماوس Mouse :بهترين وسيله جهت نشان دادن و انتخاب نمودن گزينه ها و ايجاد ارتباط كاربر با رايانه مي باشد.

-اسپيكرها: جهت پخش صدا به كار مي روند.

- ابزارهاي قابل حمل جهت ذخيره سازي Removable Storage :با استفاده از اين ابزارها مي توان اطلاعات را به رايانه اضافه نمود و يا آنها را ذخيره كرده و به محل ديگر برد.

Flash Memory- يكنوع حافظه است EEPROM كه امكان ذخيره سازي دائم را به وجود مي آورد. مانند كارت هاي PCMCIA كه داراي سرعت بالايي مي باشند.

- فلاپي ديسك Floppy Disk جهت ذخيره اطلاعات بكار مي رود و حجم آن ۴۴/۱ مگابايت است.

CD- ROM- ديسك هاي فشرده رايج هستند كه حجم آنها از ۶۵۰ مگا بايت به بالاست و براي ذخيره و جابه جايي اطلاعات مي باشد.

Digital Versatile Disc DVD- ROM- اين نوع رسانه مانند CD مي باشد كه با اين تفاوت كه داراي حجم بسيار بالا و كيفيت فوق العاده باشد.

نكته: البته رسانه هاي ديگري نيز مانند Optical Drive، ديسك هاي بزرگ معروف به درايوB و Tape Backup و ساير موارد نيز وجود داشته اند كه در حال حاضر با آمدن CD و DVD و رسانه اي بسيار حرفه اي تر غير قابل استفاده شده اند.

انواع پورت ها

- موازي Parallel :اين نوع اتصال عموماً براي چاپگرها به كار مي رود.

- سريال Seriall: اين نوع پورت هاي جهت اتصال دستگاه هايي مانند مودم خارج يه كار مي رود.

- پورت :Universal Serial BUS USB اين نوع اتصال نيز براي اتصال دستگاههاي مانند اسكنر و يا دوربين هاي ديجيتالي و يا وب ا ستفاده مي شود.

اتصالات مربوط به شبكه و اينترنت

- مودم هاي كابلي Modem Cable :براي ارتباط با اينترنت از طريق سيستم تلويزيون به كار مي رود.

- مودم هاي:vdsl Very high bit-rate DSL در اين نوع ارتباط از فيبر نوري استفاده مي شود.

-مودم هاي SL Digital Subscriber Line يك نوع ارتباط با سرعت بالا از طريق خطوط تلفن برقرار مي شود.
 
آخرین ویرایش:

Mehdi

متخصص بخش سخت افزار
قسمت دوم: منبع تغذیه

منبع تغذيه Power Supply منبع تغذيه، يك دستگاه الكتريكي است كه مسئول تأمين و تنظيم جريان الكتريكي در رايانه مي باشد.
اين قطعه به صورت جعبه اي بزرگ و مستقل در جعبه رايانه قرار دارد و بيشتر خرابي ها را در رايانه به وجود مي آورد. كار منبع تغذيه اين است كه ولتاژ متناوب (اي سي، Alternate Current) را تبديل به ولتاژ مستقيم (دي سي، Direct Current) مي كند.
انواع منبع تغذيه منبع تغذيه داراي ابعاد و شكل هاي مختلفي مي باشند، كه بايد با جعبه و مادربرد نصب شده در داخل جعبه رايانه همخواني و سازگاري داشته باشد. بنابراين، اين سه قطعه بايد از يك نوع باشند.

انواع اين اجزاء عبارتند از:

۱- XT ۲- AT desk خوابيده يا روميزي
۳-AT tower برجي يا ايستاده
۴- Baby AT ۵- Rectifier باريك، نقلي ۶- ATX زماني كه رايانه XT توسط شركت آي بي ام به بازار عرضه شد منبع تغذيه آن شبيه منبع تغذيه هاي قبلي بود، درصورتي كه توان خروجي آنها دو برابر قبلي ها بود. پس از آن زماني كه آي بي ام رايانه AT را ساخت از يك منبع تغذيه بزرگتر براي آن استفاده نمود كه داراي اشكال مختلفي بود.

از اين نوع منبع تغذيه استقبال زيادي شد تا جايي كه هنوز نيز در سيستم هاي امروزي از آن استفاده مي شود. نوع برجي يا ايستاده سيستم هاي AT مشابه سيستم هاي خوابيدهAT است.
مشخصات منبع تغذيه و مادربرد در سيستم هاي روميزي با مشخصات منبع تغذيه و مادربرد در سيستم هاي برجي فرقي ندارد.

تنها فرق آنها كليد هاي برق در مكانهاي متفاوت مي باشد. نوع ديگري از AT وجود دارد كه كوچكتر از نوع ايستاده مي باشد و منبع تغذيه آن نيز كوچك مي باشد، كه بچه اي تي نام دارد. منبع تغذيه جعبه هاي نقلي نيز از نظر مشخصات ظاهري با ساير منبع تغذيه ها تفاوت دارند.

در اين نوع جعبه ها مادربردها داراي استاندارد مشخصي نيستند، اما منبع تغذيه آنها داراي استانداردهاي مشخصي است و قابل تعويض نيز مي باشد. منبع تغذيه ATX مانند منبع تغذيه نقلي مي باشد، بنابراين، اين دو قابل جابجايي مي باشند.

نوع منبع تغذيه ATX داراي مشخصات و مزاياي زير مي باشد:

۱- سيگنال هاي (a) روشن بودن - Power on و سيگنال هاي (b) توقفStandby (Soft Power) ۵ V در اين نوع منبع تغذيه وجود دارد.
۲- امكان حذف گرماگير (Heat Sink) از روي پردازنده در اين نوع وجود دارد.
۳- مادربردها در اين نوع حاوي قطعاتي به نام تنظيم گر (Regulator) جهت توليد ولتاژ ۳/۳ ولتي نمي باشند به اين علت كه رابط منبع تغذيه به مادربرد ،خود داراي ولتاژ ۳/۳ ولت است.
۴- تهويه به سمت داخل منبع تغذيه صورت مي گيرد تا مادربرد خنك شود. اين كار خود باعث خنك شدن قطعات داخلي و تميز شدن سطح قطعات داخلي مي گردد.
۵- فيش اتصال منبع تغذيه مادربرد۲۰ پايه اي است و امكان اتصال برعكس آن وجود ندارد.

منبع تغذيه داراي ولتاژهاي گوناگون با توان هاي مختلف مي باشند مانند:

۱- ولتاژ ۵+ ولت: اين نوع ولتاژ توسط تمام مادربردها، مدارها و وسايل جانبي رايانه مورد استفاده قرار مي گيرد و رنگ سيم هاي آنها قرمز مي باشد.
۲- ولتاژ ۱۲+ ولت: موتور هاردديسك و وسايل مشابه با آن از اين ولتاژ استفاده مي كنند كه در مادربردهاي جديدتر ديگر آن را به كار نمي برند. مدارهاي درگاه هاي سريال نيز از اين ولتاژ استفاده مي كنند. سيم آن نيز معمولاً زرد رنگ است و گاهي اوقات به رنگ قرمز نيز ديده مي شود.
۳- ولتاژ هاي ۵- و ۱۲- ولت: اين دو ولتاژ در رايانه هاي قديمي وجود داشت، اما اكنون در منبع تغذيه ها نصب مي شوند. اين دو داراي جرياني كمتر از يك آمپر هستند.
۴- ولتاژ ۳/۳+ ولت: پردازنده هاي جديد از ولتاژ ۳/۳ ولت و يا كمتر استفاده مي كنند، در صورتي كه پردازنده هاي قديمي از ولتاژ ۵+ استفاده مي كردند. در پردازنده هاي جديد ولتاژ مورد نياز پردازنده مستقيماً توليد مي شود و بنابراين در هزينه مصرف انرژي صرفه جويي مي شود و از حرارت نيز كاسته مي شود.
۵- سيگنال هاي صحت ولتاژ (قدرت مطلوب): پس از روشن شدن سيستم، منبع تغذيه به مقداري زمان احتياج دارد تا به سطح ولتاژ مفيد و مطلوب برسد و اگر سيستم شروع به كار كند و منبع تغذيه بعد از آن به كار افتد اتفاقات بدي رخ خواهد داد. براي اينكه رايانه قبل از آمادگي منبع تغذيه روشن نگردد سيگنالي به نام (Power good) درستي ولتاژ و يا قدرت مطلوب به مادربرد ارسال مي شود. تا قبل از رسيدن آن مادربرد كاري انجام نمي دهد و در صورتي كه مشكلي در برق به وجود آيد و جرقه اي توليد شود منبع تغذيه اين سيگنال را قطع مي كند و مادربرد كار نخواهد كرد.
۶- سيگنال روشن بودن: در منبع تغذيه هاي جديد تابعي تعريف شده است كه به وسيله نرم افزارها مي توان منبع تغذيه را كنترل نمود. اين سيگنال با عنوان روشن بودن و يا تأمين قدرت (Power On) مادربرد را كنترل مي كند و باعث روشن شدن منبع تغذيه مي شود.
۷- سيگنال ۵+ ولتي توقف Standby ۵ V : اين ولتاژ در حالت خاموش بودن رايانه وجود دارد، اين سيگنال به صورت نرم افزاري در حالت خاموش بودن رايانه آن را روشن مي كند.

اجزاء سازنده منبع تغذيه

۱- مبدل: كه ولتاژ را تغيير مي دهد.
۲- يك سو كننده: جريان متناوب را به جريان مستقيم تبديل مي كند.
۳- صافي يا پالايشگر: امواج را مي گيرد. منبع تغذيه قبل از روشن شدن رايانه چند آزمايش انجام مي دهد، سپس در صورت صحيح بودن سيستم سيگنال را به مادربرد مي رساند. اين حالت حفظ مي شود و در صورتي كه به هر علتي از بين برود دستگاه ريست مي شود. منبع تغذيه به دو صورت خطي و كليدي طراحي مي شود كه نوع خطي ترانس هاي بزرگتر دارند و نوع كليدي از نظر اندازه و وزن و انرژي بهتر از خطي مي باشند. منبع تغذيه هاي خوب يك مقاومت دارند كه از خراب شدن آن جلوگيري مي كند.
 

Mehdi

متخصص بخش سخت افزار
قسمت سوم: حافظه

حافظه با آن كه واژه حافظه را مي توان براي هر نوع وسيله ذخيره سازي به كار برد، اما بيشتر براي مشخص نمودن حافظه هاي سريع با قابليت ذخيره سازي موقت استفاده مي شود
زماني كه پردازنده مجبور باشد براي بازيابي اطلاعات به طور دائم از هارد استفاده نمايد طبيعتاً سرعت عمليات آن كند خواهد شد.
به طوركل از حافظه هاي متعددي به منظور نگهداري موقت اطلاعات استفاده مي شود. زماني كه در حافظه هاي دائمي مانند هارد اطلاعاتي موجود باشد كه پردازنده بخواهد از آنها استفاده نمايد بايد اطلاعات فوق از طريق حافظه RAM در اختيار پردازنده قرار گيرد و سپس اطلاعات مورد نياز خود را در حافظه Cache و دستور العمل هاي خاص عملياتي را در ريجيسترها ذخيره كند.
همان طور كه مي دانيد تمام عناصر سخت افزاري و نرم افزاري با يكديگر كار مي كنند و از زماني كه سيستم روشن مي شود و تا زماني كه خاموش مي شود، پردازنده به صورت دائم و پيوسته از حافظه استفاده مي كند. حافظه رايانه بر اساس نوع آن از تعدادي خازن و ترانزيستور كه در چند آي سي(IC) قرار گرفته، تشكيل شده است.
براي ذخيره اطلاعات در حافظه، بعضي از ترانزيستورها در حالت قطع و برخي در حالت وصل قرار مي گيرند. خازن ها نيز در حالت شارژ و دشارژ قرار مي گيرند. در رايانه از چندين نوع حافظه استفاده مي شود:
*Random Access Memory- RAM اين نوع حافظه براي ذخيره سازي موقت اطلاعات رايانه در حالت كار با سيستم به كار مي رود. * Read Only Memory ROM اين نوع حافظه، حافظه دائم است و از آن براي ذخيره سازي اطلاعات مهم استفاده مي شود.
* Caching نوعي حافظه است كه براي ذخيره اطلاعاتي كه داراي فركانس بازيابي بالا مي باشند استفاده مي شود. * Basc Input/ Output System- BIOS اين حافظه يك نوع حافظه ROM مي باشد كه از اطلاعات آن جهت هر بار راه اندازي سيستم استفاده مي شود.
* Virtual Mem اين حافظه در زمان نياز عمليات جايگزيني را در حافظه RAM انجام مي دهد. در واقع فضايي بر روي هارديسك مي باشد كه از آن براي ذخيره سازي موقت اطلاعات استفاده مي شود. حافظه RAM (خواندني و نوشتني) همان طور كه مي دانيد اطلاعات موقت رايانه با خاموش شدن سيستم كاملاً پاك مي شود.
به اين صورت كه اگر برنامه يا داده اي به رايانه داده باشيد و به هر علتي برق رايانه قطع شود، پس از روشن شدن دوباره رايانه بايد برنامه و يا اطلاعات را دوباره وارد كنيد.
پردازنده اطلاعات مورد نياز خود را از حافظه رم دريافت مي كند و عمليات لازم را انجام داده و سپس نتايج را در رم ذخيره مي كند. بنابر اين اين نوع حافظه خواندني و نوشتني است. هنگامي كه رايانه را روشن مي كنيد حافظه اصلي كنترل و تست مي شود. مقدار حجم تست شده روي صفحه نمايش مشاهده مي شود.
حافظه رم به دو نوع تقسيم مي شود: DRAM (رم پويا يا ديناميك) و SRAM (رم استاتيك) حافظه دي رم جهت ذخيره اطلاعات خود از خازن استفاده مي كند. خازن در حالت شارژ معادل يك است و در حالت دشارژ معادل صفر است. اين حافظه بايد به طور مداوم تغذيه الكتريكي شود تا بارهاي مثبت و منفي را از دست ندهد.
در اين حالت در فاصله زماني متناوب عمليات بازنويسي و تجديد اطلاعات صورت مي پذيرد. دو نوع مدار بازنويسي وجود دارد: ۱۰بيتي كه به آن بازنويسي ۱k مي گويند و ۱۱ بيتي كه به آن بازنويسي ۲k گويند. حافظه ROM اين نوع حافظه در زمان خاموش شدن رايانه داده هايش را از دست نمي دهد. تعدادي از حافظه مانند ROM و حافظه فلش كارتهاي هوشمند در اين گروه قرار مي گيرد. سرعت حافظه سرعت تراشه هاي رم با مدت زمان لازم براي دسترسي به يك بيت از اطلاعات سنجيده مي شود.
اين واحد با سرعت نانو ثانيه اندازه گيري مي شود. توجه داشته باشيد كه سرعت حافظه هاي دي رم را با سرعت ساعت اندازه گيري مي كنند. سرعت تراشه هاي حافظه به طور عادي در محدوده ۵۰ تا ۱۲۰ نانوثانيه است. هر چه عدد بيان شده براي سرعت كم تر باشد حافظه سريع تر است. اين نوع حافظه ها از نظر سخت افزاري به گروه هاي زير تقسيم مي شوند: انواع حافظه حافظه SRAM حافظه اي با دستيابي تصادفي ايستا مي باشد كه در آغاز براي Cache استفاده مي شد.
اين حافظه از چندين ترانزيستور براي هر يك از سلول هاي حافظه خود استفاده مي نمايد. اين نوع حافظه قادر نيست مانند DRAM اطلاعات را به طور پيوسته بازخواني نمايد. هر يك از سلول هاي حافظه مادامي كه منبع تأمين انرژي آنها فعال باشد داده هاي خود را ذخيره خواهد نمود. سرعت اين نوع حافظه ها بسيار بالا مي باشد. چه ميزان حافظه مورد نياز است؟
ميزان حافظه مورد نياز بر اساس كاربردهاي متفاوت گوناگون مي باشد. براي استفاده از برنامه هاي خاص، نرم افزارهاي طراحي و انيميشن سه بعدي برنامه هاي سرگرم كننده و دستيابي به اينترنت هر يك نياز به حافظه خاصي دارد. در واقع افزايش حافظه به نوع استفاده از رايانه مربوط مي گردد. به طور مثال سيستم عامل ويندوز ۹۵ و يا ۹۸ حداقل به ۳۲ مگابايت حافظه نياز دارد. سيستم عامل ويندوز ۲۰۰۰ حداقل به ۶۴ مگابايت، سيستم عامل لينوكس حداقل به ۴ مگابايت، سيستم عامل اپل به ۱۶ مگابايت و ويندوز XP به ۶۴ مگابايت حافظه نياز دارد .
 

Mehdi

متخصص بخش سخت افزار
قسمت چهارم: کارت گرافیک

كارت گرافيكي براي اينكه بتوان در صفحه نمايش رايانه ، تصويرهاي مربوط به داده ها و اطلاعات را مشاهده نمود بايد ارتباطي بين مادربرد و نمايشگر برقرار شود ، به همين دليل كارت گرافيكي در يكي از شكاف هاي توسعه مادربرد قرار مي گيرد و يا يك كابل به مادربرد وصل مي شود و نمايش اطلاعات بر روي صفحه را كنترل مي كند.
كارت گرافيكي در رايانه داراي جايگاه خاصي است. در بيشتر رايانه ها ، كارت گرافيكي اطلاعات ديجيتال را براي نمايش توسط نمايشگر به اطلاعات آنالوگ تبديل مي نمايند

در واقع نقاط تشكيل دهنده تصوير بر روي نمايشگر پيكسل نام دارند. هر پيكسل يك رنگ را نمايش مي دهد. در نمايشگرهاي مكينتاش هر پيكسل داراي دو رنگ است (سفيد و سياه). در بعضي نمايشگر هاي امروزي هر پيكسل داراي ۲۵۶ رنگ است. در بيشتر صفحات نمايشگر ، پيكسل ها به صورت تمام رنگ (True Color) هستند و داراي ۱۶/۸ ميليون حالت مختلفند. كارت گرافيكي يك برد مدار چاپي به همراه حافظه و يك پردازنده اختصاصي است.

پردازنده محاسبات مورد نياز گرافيكي را انجام مي دهد. كارت هاي گرافيكي با نامهاي زير شناخته مي شوند: كارت ويديويي،كنترل گر گرافيكي يا ويديويي، آداپتور گرافيكي يا ويديويي، شتاب دهنده گرافيكي يا ويديويي. كارت گرافيكي از سه بخش اساسي تشكيل مي شود:

حافظه:يكي از مهمترين اجزاي كارت گرافيكي است.حافظه رنگ مربوط به هر پيكسل را نگهداري مي كند. در ساده ترين حالت (دو پيكسل سياه و سفيد) به يك بيت براي ذخيره سازي رنگ هر پيكسل نياز مي باشد.
با توجه به اينكه هر بايت شامل هشت بيت است ، نياز به هشتاد بايت براي ذخيره سازي رنگ مربوط به پيكسل هاي موجود در يك سطر در روي صفحه نمايشگر و ۳۸۴۰۰ بايت حافظه به منظور نگهداري تمام پيكسل هاي قابل مشاهده بر روي نمايشگر خواهد بود.

اينترفيس رايانه: اينتر فيس با اتصال كارت گرافيكي به گذرگاه مربوطه بر روي برد اصلي ، محتويات حافظه را تغيير مي دهد. در اين حالت رايانه سيگنال ها را از طريق گذرگاه براي تغيير محتويات حافظه ارسال مي كند.

اينترفيس ويديو: اين قسمت سيگنال مورد نياز براي مانيتور را مي سازد. كارت گرافيكي سيگنال هاي رنگي را توليد مي كند و باعث حركت اشعه در CRT مي شود.
در واقع كارت گرافيكي تمام حافظه اي مربوطه را بيت به بيت اسكن مي كند. سيگنال هاي مورد نظر جهت هر پيكسل موجود براي هر خط ارسال و در نهايت يك پالس افقي Sync ارسال مي گردد ، عمليات فوق براي ۴۸۰ خط تكرار و در پايان يك پالس عمودي Sync ارسال خواهد شد.
كارت هاي گرافيكي ساده frame Buffer ناميده مي شود. اين نوع كارت يك Frame از اطلاعات را نگاهداري مي كند. ريزپردازنده رايانه مسئول بهنگام سازي هر بايت در حافظه كارت گرافيك است.
در صورتي كه عمليات گرافيكي پيچيده اي وجود داشته باشد ، ريزپردازنده مدت زيادي را صرف بهنگام سازي حافظه كارت مي نمايد. بنابراين براي ساير عمليات زماني باقي نخواهد ماند.
مثلاً اگر يك تصوير سه بعدي داراي ۰۰۰/۱۵ ضلع باشد ، ريزپردازنده بايد هر ضلع را رسم و عمليات مربوط را در كارت انجام دهد ، بدين صورت اين عمليات زمان زيادي لازم دارد. در صورتي كه كارت هاي گرافيكي جديد حجم عمليات مربوط به پردازنده را به شدت كاهش مي دهد.
اين نوع كارت هاي جديد داراي يك پردازنده قوي هستند كه مختص اين عمليات مي باشند. با توجه به نوع كارت گرافيك پردازنده مي تواند يك كمك پردازنده گرافيكي و يا يك شتاب دهنده گرافيكي باشد.
پردازنده كمكي و پردازنده اصلي همزمان فعاليت نموده و زماني كه از شتاب دهنده گرافيك استفاده مي شود دستورات لازم از طريق پردازنده اصلي براي شتاب دهنده ارسال و شتاب دهنده ساير كارها را انجام مي دهد.
در سيستم هاي كمك پردازنده درايو كارت گرافيك عمليات مربوط به كارهاي گرافيكي را به طور مستقيم براي پردازنده كمكي گرافيكي ارسال مي كند.
در سيستم هاي شتاب دهنده گرافيكي درايو كارت گرافيك در ابتدا همه چيز را براي پردازنده اصلي ارسال مي كند. سپس پردازنده اصلي شتاب دهنده گرافيك را هدايت مي نمايد.

عناصر كارت گرافيكي - حافظه: در كارت گرافيكي از حافظه هاي مختلف استفاده مي شود. يكي از بهترين نوع آنها از پيكربندي dual-ported استفاده مي نمايد. در اين نوع كارت ها امكان نوشتن در يك بخش و خواندن از بخش ديگر به صورت همزمان امكان پذير است. بدين صورت مدت زمان كاهش خواهد يافت

Digital-to-Analog Converter DAC يك نوع تبديل كننده مي باشد كه داده ها را به ديجيتال تبديل مي كند. سرعت اين نوع تبديل كننده تأثير بسيار زيادي بر مشاهده تصوير بر روي صفحه نمايش خواهد داشت.

Display Connector اغلب كارت هاي گرافيكي از كانكتور ۱۵ پين استفاده مي كنند. اين نوع كانكتورها در زمان عرضه VGA مطرح شدند.

Graphic BIOS كارت هاي گرافيكي داراي يك تراشه كوچك مي باشند. اين تراشه به قسمت هاي ديگر كارت نحوه انجام عمليات را اعمال خواهد كرد. اين قسمت مسئوليت تست كارت گرافيك يعني عمليات ورودي و خروجي را نيز بر عهده دارد. :Computer (bus)Conneetor اين نوع پورت امكان اتصال كارت بر حافظه را فراهم مي آورد و داراي سرعت بيشتري مي باشد. بيشتر اين گذرگاه ها از نوع AGP مي باشد.

پردازنده گرافيكي: همانطور كه از نام آن پيداست مغز كارت گرافيك مي باشد و مي تواند در سه حالت پيكربندي كارت گرافيكي را انجام دهد. استانداردهاي كارت گرافيك اولين كارت گرافيك در سال ۱۹۸۱ توسط شركت IBM به بازار عرضه گرديد. اين نوع كارت به صورت تك رنگ و با نام اختصاري MDAS ارائه گرديد.
رنگ نوشته در اين حالت سفيد يا سبز و زمينه سياه بود. صفحات نمايشگري كه از اين كارت ها استفاده مي كردند ، متني بودند. سپس كارت هاي چهار رنگ HGC در بازار عرضه گرديدند.
بعد از آن كارت هاي هشت رنگ CGA و كارت هاي شانزده رنگ EGA توليد شدند. شركت IBM در سال ۱۹۷۸ كارت VGA را توليد كرد. اين نوع كارت ها ۲۵۶ رنگ را نشان مي دادند و وضوح آنها ۴۰۰* ۷۲۰ بود. سپس كارت هاي SVGA عرضه شدند. اين نوع كارت ۱۶/۸ ميليون رنگ با وضوح ۱۰۲۴* ۱۲۸۰ بود. هر چه تعداد رنگ و وضوح تصوير افزايش يابد كارت گرافيك بهتر خواهد بود. كارت هاي گرافيكي به راحتي به سيستم متصل مي شوند. كارت هاي جديد از طريق پورت AGP و كارت هاي قديمي از طريق اسلات هاي ISA و يا PCI بر سيستم متصل مي شدند.
 

Mehdi

متخصص بخش سخت افزار
قسمت پنجم: هارد دیسک

هارد ديسك : با اين كه ديسك هاي نرم توانايي ذخيره اطلاعات را دارند، اما داراي معايبي نيز مي باشند.
از جمله اين عيب ها گنجايش و سرعت كم دسترسي به اطلاعات را مي توان نام برد.
در صورتي كه ديسك سخت اين گونه نمي باشد. هر رايانه معمولاً يك هاردديسك دارد اما بعضي سيستم ها ممكن است داراي دو يا چند هاردديسك باشند.

در واقع هاردديسك يك محيط ذخيره سازي دائم براي داده ها مي باشد. اطلاعات در رايانه به گونه اي تبديل مي گردند كه بتوان آنها را به طور دائم بر روي هارد ذخيره كرد. هاردديسك در سال ۱۹۵۰ اختراع گرديد.
در آن زمان هاردديسك ها با قطر ۲۰ اينچ يعني ۵۰/۸ سانتي متر و توانايي ذخيره سازي چندين مگابايت را داشتند. به اين ديسك ها ديسك ثابت مي گفتند.

اما براي تمايز آنها با فلاپي ديسك هاردديسك نام گرفتند.اين هاردديسك ها داراي يك صفحه براي نگهداري محيط مغناطيسي مي باشند. در واقع هاردديسك مشابه يك نوار كاست مي باشد و از روش نوار كاست براي ضبط مغناطيسي استفاده مي نمايند.

در اين حالت به سادگي مي توان اطلاعات را حذف و بازنويسي كرد. اين اطلاعات مدت ها باقي خواهند ماند.
تمايز هاردديسك با نوار كاست - در هاردديسك لايه مغناطيسي بر روي ديسك شيشه اي و يا يك آلومينيوم اشباع شده قرار خواهد گرفت كه به خوبي سطح آنها صيقل داده مي شود.
در هاردديسك مي توان به سرعت در هر نقطه دلخواه اطلاعات را ذخيره و بازيابي نمود، به اين صورت كه احتياجي به ترتيب ذخيره اطلاعات نمي باشد.

- در هاردديسك هد خواندن و نوشتن ديسك را لمس نخواهد كرد. - گرداننده هاردديسك هد مربوط به هارد را در هر ثانيه ۳۰۰۰ اينچ به چرخش در مي آورد.
- هاردديسك مي تواند حجم بسيار بالايي از اطلاعات را در فضايي كم و با سرعت بالا ذخيره سازد. اين اطلاعات در قالب فايل ذخيره مي شوند. در واقع فايل مجموعه اي از بايت هاست. زماني كه برنامه اي اجرا مي شود هاردديسك اطلاعات مربوط به برنامه را براي استفاده به پردازنده ارسال خواهد كرد. اجزاي هاردديسك به مجموعه ديسكهاي دايره اي شكلي كه روي هم قرار مي گيرندو اطلاعات بر روي آنها ذخيره مي گردد هاردديسك مي گويند .

اين مجموعه براي حفاظت در مقابل گرد و خاك و ساير عوامل مخرب در داخل يك پوشش دربسته قرار مي گيرد. در واقع هاردديسك جعبه اي فلزي است كه از چند صفحه ديسك و چند هد تشكيل مي شود. هر ديسك داراي دو سطح است كه مي توان داده ها را بر روي آن ذخيره كرد. پس در زمان خواندن و نوشتن بر روي هر يك از ديسك ها دو هد قرار مي گيرد.

در زمان خريد هاردديسك نسبت نوك يا هد به ديسك بسيار مهم است يعني اگر نسبت به صورت ۸ به ۴ بيان شود در واقع هاردديسك ۸ نوك يا هد و ۴ ديسك يا صفحه دو طرفه دارد.
دو برابر بودن تعداد هدها بر صفحه ها نشان مي دهد يك هد براي هر طرف ديسك وجود دارد. در واقع هاردديسك از دو قسمت زير براي ذخيره و بازيابي اطلاعات استفاده مي كند:

1- هد يا نوك هاي خواندن و نوشتن كه از مركز ديسك به طرف لبه قرار دارد.
۲- ديسك هاي دايره اي با توانايي چرخش يا دوران از نظر نوع نصب و كاربرد هاردديسك به دو دسته تقسيم مي شود:
۱- ديسك هاي سخت قابل حمل
۲- ديسك هاي سخت ثابت نكته:ديسك هاي قابل حمل را بدون اين كه اطلاعات آنها صدمه ببيند مي توان حمل كرد، در صورتي كه ديسك هاي ثابت در داخل جعبه رايانه نصب مي شود. توجه داشته باشيد كه در زمان روشن بودن رايانه آن را حركت ندهيد زيرا ديسك سخت صدمه مي بيند.

هاردديسك معمولي در حدود ۱۵ سانتي متر طول، ۱۰ سانتي متر عرض و در حدود ۳ سانتي متر ارتفاع دارند. وزن آنها نيز كمتر از ۱ كيلوگرم است. اين گونه ديسك ها در حدود ۸۰ گيگا بايت داده را مي توانند در خود جاي دهند. ديسك هاي سخت از نظر اندازه به چند دسته تقسيم مي شوند:
۱- ديسك هاي سخت ۵/۲ اينچي
۲- ديسك هاي سخت ۸/۱ اينچي
۳- ديسك هاي سخت ۲۵/۵ و ۵/۳ اينچي به نام ديسك هاي سخت تمام قد
۴-ديسك هاي سخت ۲۵/۵ و ۵/۳ اينچي مشهور به ديسك هاي سخت نيم قد ديسك هاي تمام قد در حال حاضر توليد نمي شوند. ديسك هاي شخصي معمولاً از نوع ۵/۳ اينچي نيم قد بوده و داراي ارتفاع ۵/۳ سانتي متري هستند.

پس ديسك هايي كه امروزه ساخته مي شوند اغلب ۵/۳ و ۵/۲ اينچي هستند. ديسك هاي سخت ۸/۱ اينچي حداكثر ۵ گيگابايت فضا دارند. اين گونه ديسك ها اطلاعات را بر روي يك سطح از ديسك هاي موجود ذخيره مي كنند.

به اين ديسك ها ديسك يك لبه هم مي گويند اما در حال حاضر مي توان براي هر دو سطح ديسك اطلاعات را ذخيره
كرد. جنس هاردديسك همانطور كه گفته شد ديسك هاي سخت داراي چند صفحه هستند كه به طور عمودي روي هم قرار دارند. جنس اين صفحه ها عموماً از شيشه، آلياژ آلومينيوم، تركيب سراميك و شيشه، سراميك و ساير مواد ساخته مي شود.

به اين علت كه ديسك ها بايد سبك و مقاوم باشند و در اثر سرما و گرما تغيير حالت ندهند. به طور كلي جنس ديسك ها از آلومينيوم همراه با پوششي از اكسيد آهن يا آلياژ كبالت است كه بسيار با ظرافت بر روي آن قرار مي گيرد. اين پوشش مغناطيسي به سطح حامل اطلاعات امكان مغناطيسي شدن مي دهد. علاوه بر اين بسيار نازك مي باشد و در برابر برخورد با هد قابل خواندن و نوشتن است.

جهت اندازه گيري كارآيي يك هاردديسك از دو روش استفاده مي گردد:
۱- اندازه گيري زمان جست وجو: مدت زمان بين درخواست يك فايل توسط پردازنده تا ارسال اولين بايت فايل مورد نظر.
۲- اندازه گيري ميزان داده: تعداد بايت هاي ارسالي در هر ثانيه براي پردازنده كه اين اندازه معمولاً بين ۵ تا ۴۰ مگا بايت در هر ثانيه است.

هادرديسك داراي موتوري مي باشد كه اين موتور باعث چرخش صفحات هاردديسك مي شود. در كنار برد كنترل كننده، كانكتورهاي مربوط به موتور قرار دارد. مكانيزمي كه باعث حركت بازوها بر روي هاردديسك مي گردد سرعت و دقت هارد را تعيين مي كند. در اين حالت از يك موتور خطي با سرعت بالا استفاده مي شود.
 

Mehdi

متخصص بخش سخت افزار
قسمت ششم: هارد دیسک (قسمت2)

نحوه قرار گيري اطلاعات در هارد اطلاعات بر روي سطح هر يك از صفحات ديسك سخت در مجموعه اي به نام سكتور و شيار ذخيره مي گردد. شيارها دواير متحدالمركزي هستند(نواحي زرد) كه براي هر يك از آنها تعداد محدودي سكتور(نواحي آبي) با ظرفيتي بين ۲۵۶ و ۵۱۲ بايت ايجاد مي گردد. اين سكتورها همزمان با آغاز فعاليت سيستم عامل در كلاستر سازماندهي مي گردد.

زماني كه درايو رايانه تحت عمليات Low level format قرار مي گيرد سكتورها وشيارها ايجاد مي شود و زماني كه درايو High level format مي گردد با توجه به نوع سيستم عامل بستر مناسبي براي استقرار فايل هاي اطلاعاتي فراهم مي آيد. شركت و كشور سازنده يكي از مسائلي كه پس از گنجايش و عمر مفيد هارد ديسك حائز اهميت است، كارايي آن مي باشد. اما در حال حاضر هاردديسك ها از نظر كارايي اختلاف چنداني با هم ندارند.

خريد هاردديسك نسبت به گذشته بسيار آسان مي باشد. زيرا توليد كنندگان ضعيف از صحنه خارج شده اند. از لحاظ مارك و يا كارخانه سازنده ديسك سخت شركت هاي زير عمده توليد هاردديسك را بر عهده دارند: كانر- مكستور- سي گيت- وسترن ديجيتال- كوانتوم- اچ پي- فوجيتسو- توشيبا - آي بي ام و... اين ديسك ها داراي تفاوتهاي گوناگون در گنجايش، گونه، تعداد ديسك، سرعت چرخش، زمان متوسط جست وجو، حافظه واسطه و مدت زمان ضمانت مي باشند

عمر مفيد ديسك هاي سخت در سال هاي گذشته عمر ديسك هاي سخت بسيار كوتاه بود.اما در حال حاضر عمر مفيد ديسك ها افزايش يافته است. عمر مفيد با واژه (MTFB) نشان داده مي شود. اين واژه سرواژه كلمات زير به معناي ميانگين پايداري عملي و يا زمان ميانگين ميان خرابي هاست. Mean Time Between Failune اين علامت نشان دهنده متوسط فاصله زماني استفاده از ديسك سخت، تا پيش آمدن يك اشكال براي آن است.

عمر مفيد بر حسب ساعت نشان داده مي شود. سازندگان ديسك سخت عمر مفيد آن را ۴۰۰۰۰ تا ۱۰۰۰۰۰۰ در نظر مي گيرند. در صورتي كه رايانه به طور مستمر روشن نباشد و كار نكند، اين مقدار افزايش خواهد يافت. زماني كه عمر مفيد تمام مي شود ديسك سخت يكباره خراب نمي شود بلكه ممكن است به مرور دچار فرسودگي شود

در اين زمان در هنگام روشن كردن رايانه پيام Invalid System disk ظاهر مي شود. گنجايش يا ظرفيت ديسك سخت در زمان انتخاب ظرفيت هارديسك به اين فكر نكنيد كه چه گنجايشي نياز شما را برطرف مي كند بلكه به اين فكر كنيد كه در آينده به ظرفيت بيشتري احتياج داريد. البته نوع برنامه هايي كه استفاده مي كنيد راهنماي خوبي براي تعيين ظرفيت هاردديسك مي باشد.

ديسك هاي سخت از ظرفيت ۶۴۰ و ۸۵۰ مگابايت و كم تر كه در سال هاي گذشته وجود داشته است شروع مي شود و تا ۱، ۲/۱، ۶/۱، ۱/۲، ۵/۲، ۴، ...و ۸۰ ، ۱۲۰، ۱۶۰، ۲۰۰، ۲۵۰ گيگابايت و بيشتر در بازار موجود مي باشد. در حال حاضر ديسك هاي سخت با ظرفيت ۲۰ تا ۴۰ گيگا بايتي كم ترين گنجايش موجود هستند. تقريباً هيچ سازنده ديسك سختي ديگر گونه ۱ تا ۸ گيگابايتي را توليد نمي كنند.

به طور كلي براي محاسبه گنجايش ديسك سخت عامل هاي زير را بايد در نظر گرفت:
- گنجايش هر قطاع يا سكتور
- تعداد هدها يا نوك هاي خواندن و نوشتن
- تعداد استوانه ها يا سيلندرها
- تعداد قطاع ها يا سكتورها تعداد نوك يا هد شركت هاي مختلفي كه ديسك هاي سخت توليد مي كنند گنجايش هاي مختلفي را مي سازند كه ساختار آنها تقريباً يكسان است. اما تعداد صفحه هاي تشكيل دهنده ديسك و تعداد هدها يا نوك هاي خواندن و نوشتن متفاوت است. بدين صورت اگر ديسكي را با گنجايش و سرعت زياد مي خواهيد تعداد نوك هاي خواندن و نوشتن آن براي هر صفحه بايد ۵ يا بيشتر باشد تا سرعت انتقال داده ها افزايش پيدا كند.

در واقع بالا بودن گنجايش ديسك به معناي زياد بودن سرعت آن نيست بنابر اين بهتر است بدانيم چه تعداد صفحه در داخل ديسك سخت وجود دارد و نوك هاي آن چند عدد مي باشد. ديسك هاي سخت تقلبي خريد رايانه، قطعات و دستگاه هاي جانبي آن با اين كه ساده به نظر مي آيد اما بسيار پيچيده و فني مي باشد زيرا تقلب در اكثر ابزارها و دستگاه هاي رايانه به چشم مي خورد،

مانند: - تغيير برچسب: در اين حالت مشخصات روي ابزارها و دستگاه هاي رايانه را تغيير مي دهند و آنها را پاك كرده و مشخصات جديدي روي آنها مي نويسند.
- بسته بندي مجدد: در اين صورت هاردديسك دسته دوم و تقلبي را در بسته بندي و كاغذهايي درست مانند بسته بندي اصل آن قرار مي دهند.
- هاردديسك هاي ارزان قيمت: بعضي وقت ها هاردديسك هاي ارزان قيمت را به جاي نوع بهتر و گرانتر آن به كار مي برند. مخصوصاً اگر رايانه را به صورت پلمب شده خريداري كنيد.
- شيوه توليد: همان طور كه مي دانيد ابزارها به دو صورت خرده فروشي و عمده فروشي (توليد فله اي) به بازار عرضه مي شوند.

در حالت اول كالاها معمولاً اصل بوده و ويژگي هاي اعلام شده دقيقاً برابر جنس عرضه شده مي باشد. اين ابزارها معمولاً گران تر بوده، مدت ضمانت نامه اي بيشتري دارند و داراي دفترچه راهنما، جعبه بسته بندي، نرم افزار جانبي و موارد ديگر مي باشند. بنابراين تنها كاري كه مي توان انجام داد اين است كه به نكات زير قبل از خريد توجه بفرماييد:

- بسته بندي را چك كنيد.
- ضمانت نامه ها را به دقت بررسي كنيد، زيرا داشتن ضمانت نامه دليل بر اصل بودن كالا نيست.
- افزار سنجي كنيد: در صنعت رايانه به اين كار محك زني مي گويند. افزار سنج هاي رايانه اي به كاربرها كمك مي كنند تا از كارآيي سيستم، ابزارها و دستگاه آگاه شوند. افزارسنج ها برنامه هايي هستند كه با استفاده از داده هاي خود سخت افزارهاي نصب شده بر روي رايانه را چك مي كنند و اگر اين سخت افزارها و ابزارها داراي امتياز كم تري باشند. مي توان گفت آن ابزار تقلبي، دست دوم و كاركرده مي باشد.

نكته: هميشه از آخرين نگارش افزارسنج ها استفاده كنيد و در نظر داشته باشيد كه همه افزارسنج ها توانايي مورد نياز را ندارند. از جمله اين افزارسنج ها نورتون و مك آفي را مي توان نام برد.
- عيب يابي كنيد: براي اطمينان از نو بودن ابزارها مي توان از نرم افزارهاي عيب يابي و اشكال زدايي رايانه استفاده كرد. يكي از اين نرم افزارها «چك ايت» مي باشد.
- رايانه را آزمايش كنيد: براي اين كار نرم افزارهاي به خصوصي وجود دارد كه رايانه را مجبور به انجام محاسبات پيچيده مي كند. مانند: Prime95 يا BurnIn Test.
 

Mehdi

متخصص بخش سخت افزار
قسمت هفتم: هارد دیسک (قسمت3)

زمان دستيابي با توجه به اين كه صنعت ساخت ديسك سخت پيشرفت زيادي كرده است، با اين حال زمان دستيابي به اطلاعات و مقايسه ميلي ثانيه ها و بحث درباره سرعت همچنان اهميت دارد.

ويژگي هايي كه داراي اهميت مي باشند موارد ذيل مي باشند:

زمان جست وجو- زماني كه هدها و نوك هاي خواندن و نوشتن به شيار يا ترك درخواست شده انتقال پيدا مي كند. زمان آرامش يا سكون- زماني است كه مكان درخواست شده به زير نوك خواندن و نوشتن مي رسد. زمان دستيابي- زماني است كه ديسك سخت مكان درخواست شده براي داده ها را مي يابد.( زمان دستيابي اهميت زيادي دارد) سرعت انتقال داده ها- سرعتي است كه داده ها روي ديسك نوشته و يا خوانده مي شوند. اين سرعت تا اندازه زيادي به رابط هاي ديسك سخت و رايانه مربوط مي شود.

گذرگاه- براي بهره گيري از توانايي هاي ديسك سخت بايد از گذرگاه هاي داده اي سريع و پهن استفاده نمود. سرعت چرخش يا دوران مي دانيم كه هر چه ديسك سخت سريع تر بگردد داده ها با سرعت بيشتري از روي سطح ديسك خوانده مي شود، اين عمل باعث سرعت انتقال مي شود. سرعت گردش ديسك با واحد يا يكاي دور در دقيقه اندازه گيري مي شود. اين يكا به صورت «RPM» جمع سرواژه هاي «Rotation Per Minute»مي باشد.

به طور مثال ديسك هاي سخت داراي سرعت چرخش ۵۴۰۰، ۷۲۰۰، ۱۰۰۰۰، ۱۲۰۰۰ دور در دقيقه و بالاتر هستند. نكته: ديسك هاي اسكازي داراي سرعت دوران دهها هزار دور در دقيقه هستند. ديسك هاي AV ديسك هاي اي وي جمع سر واژه كلمه هاي Audio/Visual) مي باشد.

اين نوع ديسك هاي سخت داراي ويژگي هاي زير مي باشد:

۱- سرعت چرخش آنها بر حسب دور در دقيقه بسيار بالا مي باشد و معمولاً كمتر از ۷۲۰۰ دور در دقيقه نمي باشد.
داده هاي ذخيره شده بر روي اين نوع ديسك ها به صورت يكپارچه ذخيره مي شوند و تكه تكه و پراكنده نمي باشند. بنابر اين براي ويرايش صوت و تصوير مناسب مي باشند و زمان كار با اين نوع ديسك ها بسيار كاهش خواهد يافت. قالب بندي زيربنايي (فرمت سطح پايين يا فيزيكي) قبل از استفاده از ديسك سخت ابتدا بايد آن را قالب بندي يا فرمت نمود. تمام ديسك هاي سختي كه در بازار وجود دارند توسط كارخانه سازنده قالب بندي سطح پايين مي شوند.

در اين نوع قالب بندي قطاع ها، استوانه ها و شيارها و ساير موارد تعريف مي شوند. قالب بندي سطح پايين يا فيزيكي باعث مي شود قطاع ها با استفاده از جريان مغناطيسي روي شيارها مشخص شوند. در اين وضع علامت هايي روي هر شيار نوشته مي شود كه به آن Sector ID و يا شناسه قطاع گويند. شناسه هاي قطاع شماره هايي هستند كه قطاع ها را از هم جدا مي كنند. در واقع در زمان انجام عمل قالب بندي سطح پايين، سطح ديسك آزمايش مي شود و داده هاي مربوط به شناسه قطاع ها، به صورت كامل روي ديسك نوشته مي شوند.

اين داده ها توسط سيستم عامل براي مشخص كردن محل قرار گرفتن داده ها روي ديسك، مورد استفاده قرار مي گيرند. گاهي اوقات ممكن است شناسه قطاع ها ضعيف شوند، در اين حالت ممكن است پيام زير ظاهر شود. Sector not Found در اين صورت لازم است ديسك سخت را قالب بندي سطح پايين نمود. قالب بندي ديسك، سبب نوسازي و ايجاد قطاع هاي فيزيكي تازه روي آن مي شود

. با اينكه ديسك سخت در كارخانه فرمت بندي مي شود.اما گاهي اوقات انجام مجدد آن بسياري از اشكال ها را از بين مي برد. عيب يابي ديسك سخت با اينكه بيشتر اشكال هاي ديسك سخت در هنگام نصب آن بوجود مي آيد، اما پس از آن نيز به دلايل مختلف ممكن است اشكال هايي در آن بوجود بيايد:

- ممكن است ديسك كار نكند به اين علت كه كابل تغذيه (برق) شل باشد و يا در جهت عكس و نادرست نصب شده باشد.
- اگر چراغ ديسك سخت پس از روشن شدن رايانه به حالت چشمك زن درآيد اين احتمال وجود دارد كه كابل روباني داده ها نادرست نصب شده باشد.
- در صورتي كه بايوس ديسك سخت را مي شناسد اما Fdisk قادر به شناسايي آن نيست، وارد Setup شويد و گزينه اي كه مربوط به شناسايي نوع ورودي و خروجي است را از حالت خودكار درآوريد و آن را به صورت دستي تنظيم كنيد.
- همان طور كه مي دانيد بيشتر سخت افزارها و نرم افزارها بدون ايراد نمي باشند و باعث آسيب رساندن به هارد مي شوند.
- بعضي از ويروس ها باعث صدمه ديدن هارد مي شوند.

- گاهي ممكن است نوك هاي خواندن و نوشتن به صفحه هاي ديسك سخت برخورد كنند و روي آنها خش بياندازند.
- اگر هنگام كار با ديسك سخت، نمايشگر شروع به نوسان كند، ممكن است دسترسي به ديسك سخت سبب شود جريان بيشتري از منبع تغذيه كشيده شود، در نتيجه بر جريان ارسالي به كارت گرافيكي اثر بگذارد. براي همين لازم است منبع تغذيه آزمايش و بررسي شود.
 

Mehdi

متخصص بخش سخت افزار
قسمت هشتم: کارت صدا

كارت صدا Sound Card كارت صدا يكي از عناصر سخت افزاري رايانه است كه باعث پخش و ضبط صدا مي گردد. قبل از گسترش كارت هاي صدا، صدا در رايانه توسط بلند گوهاي داخلي ايجاد مي شد. اين بلند گوها توان خود را از برد اصلي مي گرفتند. استفاده از كارت صدا از اواخر سال ۱۹۸۰ شروع شد.

در حال حاضر شركت هاي متعددي توليدات خود را در اين زمينه به بازار عرضه مي كنند. كارت صوتي همانند كارت گرافيكي بر روي برد اصلي نصب مي شود و در پشت آن چند فيش براي ميكروفن و بلند گو قرار دارد. وظيفه كارت صدا آماده سازي سيگنال ها جهت پخش و دريافت سيگنال هاي ورودي از ميكروفن و آماده كردن آنها براي ذخيره در رايانه است. كارت صدا، كارت صوتي نيز ناميده مي شود و در بسياري موارد مي تواند اصواتي با كيفيت بسيار عالي توليد كند.

صوت، يك سيگنال آنالوگ است كه به صورت موج پيوسته انتشار مي يابد. رايانه همواره در حال پردازش سيگنال هاي آنالوگ است، زيرا اين سيگنال ها دائماً در حال تغييرند. در واقع لازم است كه سيگنال هاي آنالوگ به بيت هاي رقمي ديجيتال تبديل شوند. اين عمل توسط وسيله اي به نام Analog to Digital Convertor ADC صورت مي گيرد. سيگنال هاي ديجيتالي توليد شده مجدداً بايد به سيگنال هاي آنالوگ تبديل شوند تا بتوانند به وسيله بلند گو پخش شوند.

اين عمل توسط سخت افزار ديگري به نام DACصورت مي گيرد. صداهاي ديجيتال به فضاي زيادي بر روي ديسك نياز دارد. بنابراين به جاي ذخيره صدا آن را ايجاد مي كند. اين عمليات شبيه سازي صوتي نام دارد و به روش هاي زير صورت مي گيرد:

FM -1 مدولاسيون بسامد : اين روش به صورت كاملاً مصنوعي صدا را ايجاد مي كند و براي ساخت آن از دو موج سينوسي استفاده مي كند.
۲- جدول موجي صداي موجي : اين روش كم هزينه و واقعي تر است.

در اين حالت از تمامي وسايل موسيقي نمونه گيري شده است و صداي ديجيتالي توليد شده در يك جدول موج ذخيره شده است. در صورتي كه يك برنامه به صدايي احتياج داشته باشد اين جدول موج چه در كارت صدا و چه در ديسك، صداي واقعي را به برنامه مي دهد. فايل هاي صوتي با پسوند Wav در ويندوز صداهاي واقعي هستند كه از جدول موج استفاده مي كنند. بنابراين آهنگسازان حرفه اي ترجيح مي دهند اين گونه كارت هاي صدا را استفاده نمايند. اين صداها در تراشه هاي رام كارت صوتي ذخيره مي شوند و در نتيجه بسياري از توليد كنندگان بزرگ بودن حافظه جدول صوتي را دليل مرغوب بودن كارت صدا مي دادند.

- MIDI -3رابط ديجيتالي ادوات موسيقي : اين روش برخلاف روش قبلي صداي توليد شده را ضبط نمي كند، بلكه اطلاعات صدا مانند كوك، دوام، بلندي و ساير موارد را ضبط مي كند. اين اطلاعات در يك قالب استاندارد در فايل ذخيره مي شود و يا به يك وسيله موسيقي جهت اجرا ارسال مي شود. بنابراين يك فايل MIDI مجموعه اي از دستور العمل ها در مورد چگونگي اجراي نت هاست. نكته: فايل هاي MIDI جهت برقراري ويدئو كنفرانس ها و پخش فيلم در اينترنت به كار مي روند.

۴- نمونه سازي فيزيكي:اين روش نسبتاً جديد است و بسته به نوع ساز شبيه سازي شده است. با اينكه داراي صداي خوبي است اما بار زيادي بر پردازنده اصلي وارد مي سازد. اجزاي تشكيل دهنده كارت صدا - پردازنده سيگنال هاي ديجيتال كه عمليات مورد نظر را انجام مي دهند.

- مبدل آنالوگ به ديجيتال ACD براي صوت ورودي به رايانه - مبدل ديجيتال به آنالوگ DAC - حافظه ROM يا فلش جهت ذخيره سازي اطلاعات - اينترفيش دستگاه هاي موزيكال ديجيتالي MIDI جهت اتصال دستگاه هاي موزيك خارجي - كانكتورهاي لازم جهت اتصال به ميكروفن يا بلند گو - پورت مخصوص بازي براي اتصال Joystick كارت هاي صوتي قديمي عمدتاً از نوع ISA بوده اند، اما كارت صداهاي امروزي از نوع PCI هستند كه بر روي برد اصلي نصب مي گردند.

بيشتر مادربردها در حال حاضر كارت صدا را به صورت يك تراشه بر روي برد اصلي دارند. انواع اتصال كارت صدا به رايانه - بلند گو Speaker - يك منبع ورودي آنالوگ ميكروفن ضبط صوت و CD-Player - يك منبع ورودي ديجيتال نظير CD-ROM - يك منبع آنالوگ خروجي نظير ضبط صوت - يك منبع ديجيتال خروجي شنيدن صوت مراحل شنيدن صوت بر خلاف روش توليد صدا مي باشد كه در زير شرح داده شده است:

۱- داده هاي ديجيتال از هاردديسك خوانده مي شود و سپس در اختيار پردازنده اصلي قرار مي گيرد.
۲- پردازنده اصلي داده ها را براي DSP موجود بر روي كارت صدا ارسال مي كند.
3- DSP- داده هاي ديجيتال را از حالت فشرده خارج مي كند
۴- داده هاي ديجيتال غير فشرده شدن توسط DSP بلافاصله با مبدل ديجيتال به آنالوگ DAC پردازش و يك سيگنال آنالوگ ايجاد مي كنند. اين سيگنال هاي ايجاد شده از طريق هدفن يا بلند گو شنيده خواهد شد.
 

Mehdi

متخصص بخش سخت افزار
قسمت نهم: کارت صدا (قسمت2)

عمليات كارت صدا كارت صدا چهار عمليات خاص در ارتباط با صدا انجام مي دهد:
- ضبط صدا با حالات متفاوت
- پخش موزيك هاي از قبل ضبط شده مانند: MP3، Wav و يا DVD
- تركيب نمودن صداها
- پردازش صوت هاي موجود توليد كنندگان كارت صدا شركت هاي مختلفي كارت صدا را مي سازند.
مهم ترين اين سازنده ها عبارتنداز شركت هاي: Creative-S3- Trident Yamaha- Ensoniq- Cirrus Logic- ِِِDiammond- ESS- Opti 931- Opti 933- 3DJ- 3DX-Genius- Asound در هنگام خريد كارت صدا به چه نكاتي بايد توجه كرد؟ به دليل اين كه مادربردهاي جديد داراي كارت صدا به صورت سرخود مي باشند، بنابر اين ديگر نيازي نيست كه كارت صدا را به صورت جداگانه خريداري نمود.

جز در مواردي كه براي كارهاي حرفه اي از كارت صدا استفاده مي شود. دو نوع استاندارد اختصاصي براي كارت هاي صدا وجود دارد. (استاندارد Adlih و Sound Blaster) اغلب كارتهاي صوتي با Sound Blaster سازگاري دارند. با توجه به اين كه كارت صوتي نبايد با اين استاندارد به راه انداز خاصي نياز داشته باشد.

به غير از استانداردهاي ذكر شده، استانداردهاي ديگري هم وجود دارند. اكثر برنامه هاي كاربردي صوتي براي محصولاتي نوشته مي شوند كه عموميت دارند. براي همين بيشتر سازندگان، كارت هاي صوتي خود را تحت اين دو استاندارد مي سازند. نكته: بيشتر بازي هاي تحت داس ازكارت هاي صوتي با استانداردهاي ساوند بلاستر، ساوند بلاستر ۱۶ و ساوند بلاستر پرو استفاده مي كنند.

در حال حاضر بيشتر سي دي رام ها داراي فيش ورودي هدفون يا بلند گو هستند. بدين ترتيب مي توان از صداهاي آن ها استفاده كرد. اما در صورتي كه صداي بهتري مي خواهيد مي توانيد ازكارت صدا استفاده نماييد. انواع رابط ها جهت دريافت و ضبط از طريق كارت صدا لازم است رابط هاي زير وجود داشته باشد:
- رابط ورودي: اين رابط براي ورود داده هاي صوتي استفاده مي شود كه داراي انواع مختلفي مي باشند.

- رابط خروجي: اين رابط جهت ارسال سيگنال ها از كارت به وسايل خارج از رايانه به كار مي رود. يك سر كابل به كارت صوتي و سر ديگر آن به بلندگو و يا هدفون و سيم هاي استريو وصل مي شود.

_ رابط صوتي ويژه سي دي: اين نوع رابط ها جهت ارتباط بين ديسك گردان، سي دي و كارت صوتي مي باشد و اگر اين ارتباط برقرار نشود ديسك هاي سي دي صوتي پخش نمي شود و در اين حالت صدا تنها از طريق خروجي گوشي(هدفون) شنيده مي شود.

رابط ميدي بازي: اكثر كارت هاي صوتي داراي اين رابط مي باشند. اين رابط ۱۵ پايه دارد و D شكل است و مي توان به وسيله آن از ارگ هاي الكترونيكي، موسيقي را دريافت و به صورت فايل بر روي سي دي ذخيره كرد. پردازنده كارت صوتي در كارت صداهاي جديد تراشه مخصوصي به نام DSP اضافه شده است. كه مخفف Digital Signal Processor مي باشد.

اين تراشه رايانه را از انجام پردازش سيگنال هاي صدا، پارازيت گيري، فشرده سازي داده ها و موارد ديگر معاف مي دارد. كارت صوتي دوطرفه همزمان در اين نوع كارت صدا داده ها مي توانند در دو مسير همزمان جريان داشته باشند. روي كارت صداهاي دوطرفه عبارت Full doplisk نوشته مي شود.

بيشتر كارت صداهاي جديد داراي اين قابليت مي باشند. با اين كارت ها براي مكالمه تلفني بهتر از طريق رايانه استفاده مي شود. حافظه كارت صدا در بيشتر كارت صداهاي نوع آيزا حداقل ۲ مگابايت حافظه رم با نام حافظه نمونه سازي وجود دارد.

اين نوع حافظه جهت حفظ صداهاي جدول موج و صداهايي كه خود كارت مي سازد استفاده مي شود. اما در نوع كارت هاي پي سي آي احتياجي به حافظه نمونه سازي نيست. زيرا پهناي باند در اين نوع كارت ها بزرگ مي باشد و صداها بر روي حافظه اصلي رايانه قرار مي گيرد. استريو فونيك يا مونو فونيك كارت هاي مونوفونيك صدا را از يك منبع پخش مي كنند كه به آن مونو يا يك كاناله مي گويند.

در صورتي كه كارت هاي استريوفونيك به طور همزمان و از دو منبع مختلف پخش مي شود. بعضي از برنامه هاي كاربردي صداي استريو را پشتيباني نمي كنند. كارت هاي استريو گران قيمت تر از مونو مي باشد. بيشتر كارت هاي صوتي داراي يك ورودي استريو يا دو ورودي مونو هستند.

نكته: در بيشتر كارت هاي صوتي حداقل ۱۶ بيت لازم است، اما برخي ديگر از ۲۴بيت و بيشتر استفاده مي كنند. صداي سه بعدي براي استفاده از صداي سه بعدي لازم است از كارت صدا و يا بلندگوي مخصوص و نيز برنامه اي كه جلوه هاي صوتي صداي سه بعدي را مورد پشتيباني قرار دهد، استفاده نمود.

عيب يابي كارت صدا - اگر پس از نصب يك كارت صداي جديد در بعضي برنامه ها دچار مشكل صدا شويد، بايد تنظيم هاي برنامه ها را از نو تعيين كنيد. لازم است بعضي برنامه ها را دوباره نصب نمود تا با كارت جديد كار كند.

- اگر در بعضي برنامه ها صدا وجود دارد ولي هماهنگ با اعمال روي صفحه نيست لازم است برنامه هاي ديگر را ببنديد تا برنامه در حال اجرا بتواند بر همه منابع دسترسي پيدا كند.

- گاهي اوقات صداي خش خش و يا وزوز از بلندگو پخش مي شود دليل آن مزاحمت كارت هاي جانبي ديگر مي باشد. در اين صورت لازم است جاي شكاف كارت صوتي را عوض كرد. اگر باز هم اشكال رفع نشد بايد كابل هاي برق نزديك به كارت صوتي را از آن دور كرد.

- اگر صدايي از بلندگوهاي رايانه به گوش نمي رسد اعمال زير را انجام دهيد: محل اتصال بلندگو به منبع تغذيه چك كنيد. * پيچ تنظيم بلندي صدا را تنظيم نماييد. سيم اتصال بلندگو به كارت را چك كنيد. صدا را در برنامه هاي نصاب بررسي نماييد. * برنامه راه انداز كارت صوتي را دوباره نصب كنيد.
 

Mehdi

متخصص بخش سخت افزار
قسمت دهم: پردازنده (CPU)

ريزپردازنده واحد پردازش مركزي يا مغز رايانه مي باشد. اين بخش مدار الكترونيكي بسيار گسترده و پيچيده اي مي باشد كه دستورات برنامه هاي ذخيره شده را انجام مي دهد. جنس اين قطعه كوچك (تراشه) نيمه رسانا است. CPU شامل مدارهاي فشرده مي باشد و تمامي عمليات يك ميكرو رايانه را كنترل مي كند.

تمام رايانه ها (شخصي، دستي و...) داراي ريزپردازنده مي باشند. نوع ريزپردازنده در يك رايانه مي تواند متفاوت باشد اما تمام آنها عمليات يكساني انجام مي دهند. تاريخچه ريزپردازنده ريزپردازنده پتانسيل هاي لازم براي انجام محاسبات و عمليات مورد نظر يك رايانه را فراهم مي سازد. در واقع ريزپردازنده از لحاظ فيزيكي يك تراشه است.

اولين ريزپردازنده در سال ۱۹۷۱ با نام Intel ۴۰۰۴ به بازار عرضه شد. اين ريزپردازنده قدرت زيادي نداشت و تنها قادر به انجام عمليات جمع و تفريق ۴ بيتي بود. تنها نكته مثبت اين پردازنده استفاده از يك تراشه بود، زيرا تا قبل از آن از چندين تراشه براي توليد رايانه استفاده مي شد.

اولين نوع ريزپردازنده كه بر روي كامپيوتر خانگي نصب شد. ۸۰۸۰ بود. اين پردازنده ۸ بيتي بود و بر روي يك تراشه قرار داشت و در سال ۱۹۷۴ به بازار عرضه گرديد. پس از آن پردازنده اي كه تحول عظيمي در دنياي رايانه بوجود آورد ۸۰۸۸ بود. اين پردازنده در سال ۱۹۷۹ توسط شركت IBM طراحي و در سال ۱۹۸۲ عرضه گرديد. بدين صورت توليد ريزپردازنده ها توسط شركت هاي توليدكننده به سرعت رشد يافت و به مدل هاي ۸۰۲۸۶، ۸۰۳۸۶، ۸۰۴۸۶، پنتيوم ۲، پنتيوم ۳، پنتيوم ۴ منتهي شد.

اين پردازنده ها توسط شركت Intel و ساير شركت ها طراحي و به بازار عرضه شد. طبيعتاً پنتيوم هاي ۴ جديد در مقايسه با پردازنده ۸۰۸۸ بسيار قوي تر مي باشند زيرا كه از نظر سرعت به ميزان ۵۰۰۰ بار عمليات را سريعتر انجام مي دهند. جديدترين پردازنده ها اگر چه سريعتر هستند گران تر هم مي باشند.

كارآيي رايانه ها بوسيله پردازنده آن شناخته مي شود. ولي اين كيفيت فقط سرعت پروسسور را نشان مي دهد نه كارآيي كل رايانه را. به طور مثال اگر يك رايانه در حال اجراي چند نرم افزار حجيم و سنگين است و پروسسور پنتيوم ۴ آن ۲۴۰۰ كيگاهرتز است، ممكن است اطلاعات را خيلي سريع پردازش كند.

اما اين سرعت بستگي به هاردديسك نيز دارد. يعني اين كه پروسسور جهت انتقال اطلاعات زمان زيادي را در انتظار مي گذراند. پروسسورهاي امروزي ساخت شركت Intel، پنتيوم ۴ و سلرون هستند. پروسسورها با سرعت هاي مختلفي برحسب گيگاهرتز (معادل يك ميليارد هرتز با يك ميليارد سيكل در ثانيه است) براي پنتيوم ۴ از ۴/۱ گيگاهرتز تا ۵۳/۲ متغير است و براي پروسسور سرعت از ۸۵/۰ گيگاهرتز تا ۸/۱ گيگاهرتز است.

يك سلرون همه كارهايي را كه يك پنتيوم ۴ انجام مي دهد را مي تواند انجام دهد اما نه به آن سرعت. پردازنده دو عمل مهم انجام مي دهد:

۱- كنترل تمام محاسبات و عمليات
۲- كنترل قسمت هاي مختلف پردازنده در رايانه هاي شخصي به شكل يك قطعه نسبتاً تخت و كوچك به اندازه ۸ يا ۱۰ سانتي متر مربع كه نوعي ماده، مانند پلاستيك يا سراميك روي آن را پوشانده است تشكيل شده در واقع فرآيند بوجود آمدن اين مغز الكترونيكي به اين گونه مي باشد كه از سيليكان به علت خصوصيات خاصي كه دارد

جهت ايجاد تراشه استفاده مي شود. بدين گونه كه آن را به صورت ورقه هاي بسيار نازك و ظريف برش مي دهند و اين تراشه ها را در درون مخلوطي از گاز حرارت مي دهند تا گازها با آنها تركيب شوند و بدين صورت طبق اين فرآيند شيميايي سيليكان كه از جنس ماسه مي باشد به فلز و بلور تبديل مي شود كه امكان ضبط و پردازش اطلاعات را در بردارد.

اين قطعه كار ميليونها ترانزيستور را انجام مي دهد. پردازنده وظايف اصلي زير را براي رايانه انجام مي دهد:

۱- دريافت داده ها از دستگاه هاي ورودي
۲- انجام عمليات و محاسبات و كنترل و نظارت بر آنها
۳- ارسال نتايج عمليات با دستگاه هاي خروجي پردازنده مانند قلب رايانه است و از طريق كابلهاي موجود با واحدهاي ديگر مرتبط مي شوند.

در واقع از نظر فني عملكرد پردازنده با دو ويژگي تعيين مي شود:

۱- طول كليد- تعداد بيت هايي كه يك پردازنده در هر لحظه پردازش مي كند و طول اين كلمات معمولاً ۴ و ۸ و ۱۶ و ۳۲ و يا ۶۴ بيتي مي باشد.
۲- تعداد ضربان الكترونيكي كه در يك ثانيه توليد شده است و با واحد مگاهرتز سنجيده مي شود. محل قرارگيري پردازنده ها بر روي مادربرد مي باشد. بنابراين بايستي هماهنگي لازم بين مادربرد و پردازنده وجود داشته باشد. اين هماهنگي باعث بالا رفتن عمليات رايانه مي شود. در غير اين صورت نتيجه خوبي بدست نمي آيد.

نكته: بر روي پردازنده حروف و ارقامي ديده مي شود كه در واقع نشان دهنده شماره سريال ها ،سرعت، ولتاژ، مدل، نسل و نام سازنده آن مي باشد. با توجه به نوع دستورالعمل ها يك ريزپردازنده با استفاده از واحد منطبق و حساب خود (ALU) قادر به انجام عمليات محاسباتي مانند جمع و تفريق و ضرب و تقسيم است.

البته پردازنده هاي جديد اختصاصي براي انجام عمليات مربوط به اعداد اعشاري نيز مي باشند. ريزپردازنده قادر به انتقال داده ها از يك محل حافظه به محل ديگر مي باشند و مي توانند تصميم گيري نمايند و از يك محل به محل ديگر پرش داشته باشد تا دستورالعمل هاي مربوط به تصميم اتخاذ شده را انجام دهد. i
 

Mehdi

متخصص بخش سخت افزار
قسمت یازدهم: پردازنده (قسمت2)

شركت هاي توليد كننده پردازنده با توجه به اين كه پردازنده ها دستورهاي خاصي را مي پذيرند و برنامه هاي خاصي را اجرا مي كنند، طبيعتاً پردازنده هاي گوناگوني وجود دارند. اين پردازنده ها توسط شركت هاي مختلفي توليد مي شوند. بعضي از آن ها مشابه و سازگارند و برخي ديگر ناسازگار. معروف ترين اين شركت ها عبارتنداز:

Intel- IBM- AMD- Cyrix- Motorola- IDT- IIT- NEC- Nexgen- Rise- Metaflow- Chips & Technology معمولاً بر روي هر CPU نام شركت توليد كننده نوشته مي شود، ممكن است شماره آن نيز همراه با حرف اول و يا دو حرف اول توليد كننده نوشته شود.

نسل هاي پردازنده ها مهم ترين عامل شناسايي پردازنده ها، نوع آنها مي باشد كه با شماره و يا نام اختصاصي مشخص مي شود. از بين پردازنده هاي توليد شده نوع اينتل و موتورولا متداولتر از بقيه هستند. موتورولا پردازنده خود را به صورت ۸۶xxx يا نام اختصاصي و اينتل به صورت ۸۰x86 يا نام اختصاصي خود به بازار معرفي نمودند.

بدين صورت x مي تواند يك عدد دلخواه يك رقمي باشد كه هر چه مقدار آن بيشتر باشد در نتيجه رقم آن بزرگ تر بوده و پردازنده جديد تر، سريعتر و كاراتر مي باشد. قبل از پردازنده پنتيوم پردازنده ها يك شماره ۵ رقمي داشتند كه دو رقم سمت چپ معمولاً نام پردازنده و سه رقم سمت راست نسل پردازنده رامشخص مي كنند.

برخي سازندگان ديگر به جاي شماره از نام هاي اختصاصي مانند K5 و K6 استفاده مي نمودند. مدل پردازنده هر كدام از نسل هاي مختلف پردازنده ها داراي انواع متفاوتي مي باشند كه براي كارهاي خاصي ساخته شده اند. به عنوان مثال پردازنده هاي ۸۰۴۸۶ داري انواع (SX- SLC- DX- DX2- DX3- DX4- DX5) مي باشد

كه در آن DX اولين پردازنده با يك كمك پردازنده است كه داراي ۸ كيلوبايت حافظه زمان اوليه مي باشد و سرعت آن۵۰ برابر ۸۰۸۸ است، در صورتي كه SX فاقد كمك پردازنده مي باشد. نسل پنجم پردازنده اينتل داراي مدل هاي (كلاسيك، MMX) مي باشد. نسل ششم پردازنده اينتل داراي مدل هاي (IIT,II ,PRO Celeron ) هستند.

نسل هفتم پردازنده هاي اينتل داراي مدل هاي (ايتانيوم) ۶۴ بيتي با سرعت يك گيگاهرتز) مي باشد. سرعت پردازنده يكي از مواردي كه مستقياً روي كارآيي پردازنده اثر مي گذارد سرعت آن است كه معمولاً بر روي آن نوشته مي شود. هر چه پردازنده سريعتر باشد اطلاعات را سريعتر پردازش مي كند.

سرعت پردازنده ها بر حسب مگاهرتز بيان مي شود و يك مگاهرتز، معادل يك ميليون چرخه در ثانيه است. بعضي توليد كنندگان سرعتي كه بر روي پردازنده مي نويسند واقعي نيست، بلكه آنها توانمندي پردازنده در مقابل اينتل را مي سنجند و به آن سرعت معادل پنتيوم مي گويند. عوامل مؤثر در كارآيي پردازنده فركانس ساعت يا سرعت ساعت است كه معمولاً به دو صورت مي باشد:

۱- سرعت ساعت داخلي: در اين حالت پردازنده عمليات داخلي خود را براساس اين ساعت انجام مي دهد، اين سرعت برابر سرعتي است كه بر روي پردازنده ذكر شده است. در هنگام فروش نيز اين سرعت را معرفي مي كنند. مانند:

P4/2.2Ghz ۲- سرعت ساعت خارجي (سرعت گذرگاه سيستم): اين سرعت درواقع مدار الكترونيكي است كه خارج از تراشه قرار دارد و به پايه هاي مربوط به ساعت وصل مي شود. اطلاعات خارج از پردازنده مانند اطلاعات حافظه اصلي رايانه بر اين اساس سنجيده مي شود.

ولتاژ پردازنده در ابتداي ساخت پردازنده ها از ولتاژ ۵ ولتي به صورت استاندارد استفاده مي شد، اما پس از ورود پردازنده هاي «۴۸۶ دي ايكس ۴» و «پنتيوم» از ولتاژهاي پايين تر مانند ۸/۲ و ۳/۳ نيز استفاده مي شود. جايگاه پردازنده پردازنده معمولاً بر روي شبكه اي از سوراخ هاي كوچك بر روي مادربرد قرار مي گيرد.

به طور كلي تراشه گير، محلي براي نصب پردازنده يا هر نوع آي سي است. پردازنده معمولاً روي مادربرد لحيم نمي شود تا بتوان آن را ارتقا يا تعويض نمود. گرماگير پردازنده پردازنده ها در زمان كار كردن گرماي زيادي توليد مي كنند و اگر اين گرما دفع نشود ممكن است پردازنده بسوزد. براي خنك نگه داشتن پردازنده از چند روش استفاده مي كنند:

۱- استفاده ازFan : قرارگيري يك پنكه كوچك بر روي پردازنده باعث حركت هوا و هدايت گرما به بيرون مي شود. معمولاً در جعبه اصلي رايانه پنكه اي براي بيرون بردن گرما وجود دارد. با اين حال قرار دادن يك پنكه كوچك پردازنده را بهتر خنك مي كند و كارآيي رايانه بالا مي رود. بعضي از پنكه ها براي اتصال به پردازنده داراي يك گيره مي باشد كه بايد توجه نمود در هنگام نصب نبايد به مادربرد برخورد كند.

۲- استفاده از گرماگير: گرماگير وسيله اي فلزي است كه حرارت توليد شده را به وسيله يك قطعه الكتريكي جذب و به بيرون مي فرستد. گرماگير داراي پره هاي فلزي يا سراميكي است.

۳- استفاده از مواد پركننده: اين مواد بين پردازنده و پنكه قرار مي گيرد و باعث خنك شدن پردازنده مي شود. اين ماده با نام چسب نيز شناخته مي شود. پردازنده هاي تقلبي جهت تشخيص پردازنده هاي تقلبي از اصل مي توان از روش هاي زير استفاده نمود:

۱- روش چشمي: كج بودن نوشته هاي روي پردازنده - كم رنگ بودن نوشته ها - وجود خراش - وجود رنگ پريدگي چاپ قبلي - كوچك و بزرگ بودن حروف و عددها

۲- شماره سريال: جهت دريافت شماره سريال هاي واقعي مي توانيد از برنامه ID CPUاستفاده نماييد و يا به سايت پردازنده مربوطه متصل شويد.

۳- اطلاعات بايوس.

۴- اطلاعات برنامه هاي عيب ياب. خرابي پردازنده ها يكي از علت هاي خوب كار نكردن رايانه مي تواند خرابي پردازنده باشد كه البته در اولويت قرار ندارد يعني درصد خراب شدن آن بسيار كم مي باشد. برنامه اي به نام پست خطاي پردازنده را اعلام مي كند كه آن را با زدن بوق هاي پشت سر هم بيان مي كند. برنامه ديگر در اين رابطه Ndiags نورتن مي باشد كه پردازنده را تست و كنترل مي كند.
 

Mehdi

متخصص بخش سخت افزار
قسمت دوازدهم: برد اصلی (Mother Board)

بزرگترين بردي كه در داخل كيس رايانه مشاهده مي شود، مادربرد است. اين برد يكي از اجزاي اساسي و مهم محسوب مي شود. در سال ۱۹۸۲ همزمان با ارائه اولين كامپيوترهاي شخصي از برد اصلي استفاده گرديد. اين برد دربرگيرنده پروسسور، رم، انواع درايوها (اعم از هارد ديسك، سي دي رام، فلاپي درايو) و ساير موارد مي باشد

اين قطعات بوسيله كابل به برد اصلي متصل هستند ، در زمان كار كردن رايانه، اطلاعات درايوها، پروسسور و رم در حال انتقال در اين برد مي باشد.

مثلاً زماني كه برنامه اي را اجرا مي كنيم يا فايلي را ذخيره مي نماييم كارت هاي مودم، شبكه، صدا و گرافيك بوسيله اسلات هاي مادربرد به آن وصل مي شوند و زماني كه در حال كار با اينترنت هستيم، موسيقي گوش مي دهيم و يا برنامه اي را اجرا مي كنيم اطلاعات بين كارت ها، برد و پروسسور در حال رد و بدل است. جهت اتصال قطعات برروي مادربرد، شكاف يا اسلات وجود دارد.

اكثر كارت ها داراي يك لبه اتصال دهنده مي باشند كه از طريق اين لبه برروي شكاف ها قرار دارند. برد اصلي شامل چند چيپ ست مي باشد و اين چيپ ها نقل و انتقال اطلاعات بين پروسسور و ديگر اجزا را ميسر مي سازند. مادربردها در انواع مختلفي از نظر شكل و اندازه توليد مي شوند. شكل و اندازه آن ها متناسب با كيس هاي موجود در بازار مي باشد. اگر مادربرد خراب باشد رايانه از كار مي افتد.

توجه داشته باشيد كه مادربردها داراي امكانات مشابهي نمي باشند و اگر مادربردي كارت خاصي را پشتيباني نكند نمي توان از آن كارت استفاده كرد.

در ضمن اينكه همه مادربردها نمي توانند با همه پردازنده ها كار كنند. اجزاي اصلي مادربرد وجود تمام قطعاتي كه برروي مادربرد قرار دارند الزامي مي باشد. اين قطعات عبارتند از:

۱- تراشه هاي حافظه اصلي(رم) و جايگاه آن
۲- پردازنده و تراشه گير پردازنده
۳- تراشه هاي حافظه
BIOS ۴- كمك پردازنده و جايگاه آن
۵- كليدهاي قطع و وصل و اتصال گرهاي تنظيم (جامپرها)
۶- محل اتصال كابل هاي برق
۷- محل اتصال صفحه كلي
د ۸- محل اتصال بلندگو
۹- محل قرارگيري شكاف ها يا اسلات ها
۱۰- باتري و محل اتصال آن
۱۱- چندين قطعه الكترونيكي ديگر مانند خازن ها، كريستال، مقاومت ها، چيپ ست ها و ساير موارد خازن ها انرژي را ذخيره مي كنند و معمولاً براي تنظيم امواج، به عنوان يكسو كننده، جهت تبديل جريان متناوب به مستقيم به كار مي رود. كريستال ها ضربان هاي ساعت را در فاصله هاي زماني ثابت توليد مي كنند و مقاومت ها نيز ولتاژ امواج را تغيير مي دهند.

انواع مادربردها از نظر شكل همان طور كه مي دانيد اندازه مادربردها بايد با منبع تغذيه و جعبه رايانه متناسب باشد. انواع مادربردها از نظر شكل عموماً به موارد زير تقسيم مي شود:

۱- مادربرد سبك
PC/XT ۲- مادربرد سبك
AT/Full size ۳- مادربرد سبك
Baby AT or Mini AT ۴- مادربرد سبك
LPX ۵- مادربرد سبك
ATX ۶- مادربرد سبك NLX - مادربرد سبك PC/XT در سال ۱۹۸۱ به بازار عرضه شد و هم اكنون مورد استفاده قرار نمي گيرد. طول آن در حدود ۳۰ و عرض آن در حدود ۲۰ سانتي متر و داراي ۵ شكاف براي كارت ها بود.

- مادربرد سبك AT/Full size در سال ۱۹۸۴ به بازار عرضه شد.
طول آن ۳۵ و عرض آن ۳۰ سانتي متر مي باشد و تقريباً از دور خارج شدند و ديگر توليد نمي شوند، زيرا بسيار بزرگ بودند.
- مادربرد سبك Baby AT or Mini AT تقريباً استاندارد مادربرد AT/Full size را دارد ولي از نظر اندازه كوچك تر از آن است. از آنجايي كه اين مادربرد در هر جعبه اي جاي مي گيرد، بيشتر مادربردهاي كنوني بدين شكل توليد مي شوند.

- مادربرد LPX مانند نوع قبل داراي دو گونه كوچك و بزرگ بود. اين مادربرد داراي اين امكان است كه بعد از نصب اتصالات مختلف در قسمت عقب قرار مي گيرد و شكاف ها بر روي يك كارت جدا نصب مي شود و اتصال گرها در كنار هم در عقب مادربرد قرار مي گيرند.

درضمن اينكه اين نوع مادربردها داراي اتصال گرهاي اضافي نيز مي باشند. - مادربرد ATX در سال ۱۹۹۵ طراحي شدند كه شباهتي به مادربردهاي Baby AT or Mini AT دارند. با اين تفاوت كه ۹۰ درجه تغيير شكل يافته اند، در اين گونه مادربردها تهويه رايانه به خوبي انجام مي شود و داراي يك نوع جامپر مي باشد.

در اين نوع بردهاي اصلي نمي توان از هر دو نوع حافظه استفاده نمود. اين نوع بردها داراي امكاناتي مي باشند كه مي توان بدون استفاده از كابل هاي بلند قطعات را بر روي آن وصل كرد زيرا داراي جايگاه هاي خاصي مي باشند. درضمن اينكه مي توان بر روي شكاف هاي آن هر كارتي با هر طولي را بر روي آن نصب كرد.- كار با مادربرد NLX بسيار ساده مي باشد. تعميرات، نگهداري و ارتقاء آنها نيز ساده تر است.
 

Mehdi

متخصص بخش سخت افزار
قسمت سیزدهم: برد اصلی (قسمت 2)

مادربرد آن برد (On Board) بعضي مواقع مادربردها كارت صدا، گرافيك، مودم و شبكه را به صورت مجتمع دربردارد و ديگر نيازي نيست تا آنها را به صورت جداگانه خريداري نمود و بر روي آن نصب كرد. به اينگونه بردهاي اصلي آن برد مي گويند، و معمولا داراي قيمت كمتري مي باشند. به اين دليل كه عموماً قابل ارتقا، تغيير و تعمير نمي باشند.

مادربردهاي آن برد معمولاً دربرگيرنده يك يا چند مورد از قطعات گفته شده مي باشند كه مي توان بعضي از آنها را غيرفعال نمود و كارت موردنظر خود را بر روي آن نصب كرد با توجه به اينكه اينگونه مادربردها اسلات هاي كمتري دارند، بنابراين انعطاف پذيري كمتري نيز دارند. گذرگاه هاي توسعه گذرگاه يا خط حامل، يك مسير عمومي است كه داده ها از روي آن نقل و انتقال مي كنند. اين مسير به وسيله مدارهاي الكتريكي بين قسمت هاي ديگر يك رايانه ارتباط برقرار مي كنند. اين مقدار داده ها مي توانند به صورت همزمان از گذرگاه ها عبور كنند و مقدار آنها بر حسب بيت مي باشد.

به طور معمول ۴ گذرگاه اصلي در رايانه ها وجود دارد:

۱- گذرگاه پردازنده
۲- گذرگاه حافظه
۳- گذرگاه آدرس
۴- گذرگاه ورودي- خروجي گذرگاه پردازنده مسير ارتباط پردازنده و تراشه هاي مجتمع يا چيپ ست هاست. اين گذرگاه ،داده ها را به سرعت به پردازنده منتقل مي كند و از آن به بيرون مي فرستد و سرعت آن نسبت به ساير گذرگاه ها بسيار سريعتر مي باشد، گذرگاه حافظه ،داده ها را بين پردازنده، رم و حافظه رم انتقال مي دهد.

مهم ترين گذرگاه هاي توسعه عبارتند از:


گذرگاه ISA: همان طور كه مي دانيد در رايانه قطعات مختلف از طريق يك سري خطوط با يكديگر ارتباط دارند كه به آن ها خط حامل مي گويند. درواقع قطعات موردنياز بر روي اين خط قرار مي گيرند. اين گذرگاه هاي ۸ بيتي ISA نام داشتند، سپس در چند سال بعد گذرگاه هاي ۱۶ بيتي به بازار عرضه شدند، اين گذرگاه ها به علت ضريب اطمينان بالا، كارابودن و سازگاري هنوز به كار مي روند.

گذرگاه ESA :پس از توليد رايانه ۳۸۶ گذرگاه هاي عريض ۳۲ بيتي به كار گرفته شد. اين گذرگاه ها داراي شكاف هاي ۳۲ بيتي مي باشند به همين دليل نمي توان در آنها از كارت هاي ۸ يا ۱۶ بيتي استفاده كرد.

نكته: نوعي از گذرگاه ISA به نام MCK بوجود آمد، كه معماري گذرگاه ۱۶ بيتي و ۳۲ بيتي را با هم داشت اين سيستم از سيستم هاي ISA سريعتر و با آن ها ناسازگارتر بود. گذرگاه هاي ديگري مانند گذرگاه VESA، Local Buss، PCT، USP، AGP و موارد ديگر نيز وجود دارند كه به علت محدوديت آموزشي به توضيح آن ها نمي پردازيم. نصب و تعويض كارت ها همان طور كه مي دانيد مدارهاي گرافيك، صدا، تصوير، مودم و ساير موارد كه بر روي يك صفحه قرار گرفته اند را كارت مي گويند.

جهت تعويض يا نصب آنها در رايانه اعمال زير را انجام دهيد:

- با پيچ گوشتي پيچ هاي نگهدارنده كارت را باز كنيد. بدون اينكه كارت هيچ گونه مقاومتي از خود نشان دهد آن را با احتياط و با حركت دادن به سمت جلو و عقب با كشيدن تدريجي به سمت بالا از محل خود جدا كنيد. فراموش نكنيد كه بهتر است در هنگام نصب كارت ها جهت تغيير كليدهاي اتصال گر و جامپرها به دفترچه يا ورقه راهنماي كارت مراجعه نماييد. درگاه خارجي يك رايانه بدون رابط هايي كه آن را براي تبادل اطلاعات به بيرون وصل مي كند نمي تواند كار كند.

بدين ترتيب درگاه ها و رابط هاي رايانه نقش بزرگي را برعهده دارند.

۱ - درگاه سريال: اين درگاه درپشت رايانه قراردارد به درگاه هاي com نيز مشهورند و جزء اولين درگاه هايي هستند كه در رايانه هاي اوليه به كار برده شدند. درگاه هاي سريال قديمي ۲۵ پايه اي و درگاه هاي سريال جديد ۹ پايه اي هستند يعني درگاه سريال رايانه را با ۹ سيم به وسايل جانبي متصل مي كند.

۲ - درگاه موازي: به اين درگاه ها درگاه چاپگر نيز مي گويند اما در حال حاضر براي اتصال اسكنر و موارد ديگر نيز به كار مي رود، اين درگاه بزرگ ترين درگاه در پشت رايانه است كه ۲۵ سيمي مي باشد كه ۱۷ سيم آن براي سيگنال ها به كار مي رود. سيگنال ها به سه گروه داده ها، كنترل و وضعيت تقسيم مي شوند.

۳ - درگاه اسكازي: اين درگاه مي تواند اطلاعات را با سرعت بالايي جابه جا نمايد. اين درگاه براي بيشتر اسكنرها و CD و DVD نويس ها به كار مي رود.

۴ - درگاهPS/2 : اين درگاه داراي ۶ پايه سوزن براي انتقال داده هاست. كه بيشتر براي استفاده صفحه كليد و ماوس به كار مي رود.

۵ - درگاه سريال Firewire :اين درگاه براي اتصال دوربين هاي ويديوئي، نمايشگرهاي رقمي (ديجيتال)، سيستم هاي صوتي و يا سيستم هاي رقمي به رايانه استفاده مي شود.

۶ - رابط هاي DIDE: بر روي مادربرد چند رابط براي ذخيره سازي وجود دارد كه عبارتند از رابط ايده (آي دي يو)، كه در رايانه هاي قديمي وجود داشت و از آن مي توان براي اتصال دو وسيله مانند هارد ديسك و ديسك گردان CD به رايانه استفاده نمود ورابط ايده توسعه يافته كه اين رابط از رابط ايده سريعتر است و به وسيله آن مي توان چهار مورد ديگر را به رايانه وصل نمود.

كنترل گر ابزارهاي جانبي در رايانه با ابزاري به نام كنترل گر با پردازنده و ديگر اجزا ارتباط برقرار مي كنند كه نام هاي ديگر آن رابط و آداپتر مي باشد. به طور مثال هارد ديسك و صفحه كليد با كنترل گر كار مي كند و كارت گرافيكي با آداپتر. كنترل گرها يا بر روي يك كارت جدا قرار دارند و يا بر روي مادربرد
 

Mehdi

متخصص بخش سخت افزار
قسمت چهاردهم: ماوس

امروزه ماوس داراي جايگاه خاصي مي باشد. ماوس قادر به تشخيص حركت و كليك بوده و پس از تشخيص لازم، اطلاعات مورد نياز را به رايانه ارسال مي كند تا عمليات مورد نياز انجام شود. در سيستم هاي اوليه ماوسی وجود نداشته زيرا رايانه ها در آن زمان داراي اينترفيسي مشابه ماشين هاي تايپ يا كارت پانچ بودند. بعداز چندين سال كليد هاي پيكاني در اغلب ترمينال ها مورد استفاده قرار گرفتند، (حدوداً اواخر سال ۱۹۶۰ و اوايل ۱۹۷۰) سپس مدادهاي نوري و Joy Stickها به بازار عرضه شدند، تا اينكه ماوس به همراه رايانه هاي مكينتاش ارائه گرديد و اين يك موفقيت بزرگ بود.

عملكرد ماوس طبيعي و قيمت آن بسيار ارزان بود تا اينكه سيستم هاي عامل نيز از موش حمايت كردند. مهم ترين عملي كه موش انجام مي دهد تبديل حركت دست به سيگنال هايي است كه رايانه قادر به استفاده از آن مي باشد. اجزاي اصلي ماوس - گوي كوچكي درون ماوس قرار دارد و سطح مورد نظر را لمس نموده، حركت كرده و مي چرخد. - دو غلتكي كه گوي را لمس مي كنند (كه يكي حركت x را تشخيص مي دهد و ديگري حركت y را.) - هر غلتك به يك ميله متصل مي باشد و ميله باعث چرخش ديسك مي گردد. - در دو طرف ديسك دو قطعه اصلي وجود دارد كه يكي LED مادون قرمز و ديگري سنسور مادون قرمز مي باشد.

ديسك داراي سوراخ هايي مي باشد كه باعث شكست نور مي شود، اين نور توسط LED ايجاد مي شود بدين ترتيب سنسور مادون قرمز پالس هاي نور را مشاهده مي كند. تعداد پالس ها با سرعت ماوس و مسافتي كه موش حركت مي كند ارتباط مستقيم دارد. - پردازنده اي كه بر روي برد قرار دارد ، پالس ها را خوانده و تبديل به باينري مي كند و به رايانه ارسال مي نمايد. نكته: قطر گوي موش تقريباً ۲۱ ميليمتر، قطر غلتك ۷ ميليمتر و تعداد سوراخ هاي ديسك ۳۶ عدد مي باشد.

ماوس هاي نوري: اين ماوس ها در اواخر سال ۱۹۹۹ به بازار ارائه گرديدند و در هر ثانيه توسط دوربين كوچك خود ۱۵۰۰ تصوير مي گيرند. اين ماوس ها در محل مسطحي قابل استفاده مي باشند. ماوس هاي نوري داراي يك LED قرمزرنگ مي باشند كه باعث تشعشع نور درون يك سنسور CMOS مي باشد. اين سنسور هر تصوير را براي تجزيه و تحليل در اختيار پردازنده سيگنال هاي ديجيتال (DSP) قرار مي دهد. DSP با سرعت ۱۸ ميليون دستور العمل در ثانيه عمليات خود را انجام مي دهد و قادر به تشخيص الگوهاي موجود در تصاوير و نحوه تغيير آنها با تصوير قبلي مي باشد.

DSPقادر به تشخيص ميزان حركت ماوس بوده و پس از آن مختصات مربوطه را براي رايانه ارسال مي كند. رايانه نيز مكان نما را در مختصات تعيين شده بر روي مانيتور قرار خواهد داد. كانكتورهاي ماوس اغلب موش ها امروزه از يك كانكتوراستاندارد PS /2 استفاده مي نمايند. اين كانكتورها داراي۶ پين مي باشند. هر يك از اين پين ها عملكرد مخصوصي دارند. زماني كه ماوس حركت مي كند و يا كاربري دكمه آن را كليك مي نمايد، موش ۳ بايت اطلاعات را براي رايانه ارسال مي نمايد. بايت اول شامل وضعيت دكمه سمت چپ، وضعيت دكمه سمت راست، صفر، يك، جهت x، جهت y و موارد ديگر مي باشد.

دو بايت بعدي شامل مقادير x و y و تعداد پالس هاي تشخيص داده شده در جهت x و y نسبت به آخرين اطلاعات ارسال شده مي باشند. كليد ها بيشتر موش ها داراي دو كليد مي باشند، بعضي از ماوس ها سه يا چهار كليد دارند. كليد سمت چپ براي ضربه زدن روي نمادها يا گزينه هاي پنجره هاي برنامه استفاده مي شود. كليد سمت راست نيز براي فراخواني از فرمان يا ميانبرها به كار مي رود. كليدي كه بين كليد هاي چپ و راست، پايين آن و يا در كناره قاب موش قراردارد براي پيمايش صفحه (Scroll) استفاده مي شود. ماوس هاي بي سيم اين موش ها اطلاعات خود را از طريق موج هاي راديويي و يا نور مادون قرمز به رايانه ارسال مي كنند در نتيجه سيمي به كار نمي رود. موش هاي بي سيم داراي فرستنده، باتري و گيرنده متصل به كارت اصلي مي باشند.


پی نوشت: این قسمت رو توی منبع نوشته بود "موش" !!! یا من بی سوادم که نمیدونم ماوس هست نه موش یا اونی که اینو نوشته ....نمیدونم والا! تو عمرم یه بار هم ندیدم جای بگم "موش" برای همین تک تک جاهایی که این کلمه استفاده شده بود رو به ماوس تغییر دادم که فکر کنم حدود 20-30 بار این کارو کردم!
 

Mehdi

متخصص بخش سخت افزار
قسمت پانزدهم: نمایشگر

صفحات نمايشگر كه مانيتور ناميده مي شود، متداول ترين دستگاه خروجي در رايانه هاي شخصي محسوب مي گردد. صفحه نمايشگر از تعداد زيادي نقاط كوچك به نام پيكسل تشكيل شده است. هرچه تعداد اين نقاط بيشتر باشد تصوير از تفكيك پذيري (وضوح) بيشتر و در نتيجه كيفيت بالاتري برخوردار است. به طور معمول قدرت تفكيك پذيري و تعداد رنگ هاي نمايشگر به خود نمايشگر و كارت گرافيكي دستگاه بستگي دارد. تكنولوژي نمايش در سال ۱۹۷۰ اولين نمايشگرها بر روي رايانه هاي شخصي عرضه گرديدند. اين نمايشگرها تنها متن را نمايش مي دادند.

سپس در سال ۱۹۸۱ مانيتورهاي CGA Color Graphic Adape توسط شركت IBM كه قادر به نمايش چهار رنگ و وضوح تصوير ۳۲۰ پيكسل افقي و ۲۰۰ پيكسل عمودي بودند عرضه گرديد. در سال ۱۹۸۴ مانيتورهاي EGA Enhanced Graphic Adape توسط شركت IBM معرفي گرديد. اين مانيتورها قادر به نمايش ۱۶ رنگ و وضوح تصوير ۳۵۰*۶۴۰ بودند. شركت IBM در سال ۱۹۸۷ سيستم VGA(Video Graphic Array) را معرفي نمود، اين مانيتورها قادر به نمايش ۲۵۶ رنگ و وضوح تصوير ۸۰۰*۶۰۰ بودند. سپس توسط همين شركت در سال ۱۹۹۰ سيستم Extended Graphics Array XGAعرضه گرديد.

اين سيستم با وضوح تصوير ۸۰۰*۶۰۰ قادر به ارائه ۸/۱۶ ميليون رنگ با وضوح تصوير ۷۶۸*۱۰۲۴ مي باشد، كه در اين صورت ۶۵۵۳۶ رنگ را نشان مي دهد. نمايشگرهاي امروزي استانداردUXGA (Ultra Extended Graphics Array ) را حمايت مي نمايند، اين استاندارد قادر به ارائه ۸/۱۶ ميليون رنگ با وضوح تصوير ۱۲۰۰*۱۶۰۰ پيكسل است.
نحوه كار صفحه نمايش در مانيتورهاي تك رنگ يك تفنگ الكترونيكي وجود دارد كه الكترونها را با سرعت به پشت صفحه نمايش پرتاب مي كند.

سطح داخلي صفحه نمايش به يك ماده فسفري آغشته است كه در اثر برخورد الكترونها به يك نقطه از اين سطح فسفري ،نور منعكس مي شود. شعاع الكتروني ايجاد شده، نقطه هاي صفحه نمايش را از چپ به راست و از بالا به پايين جاروب مي كند. مدار كنترل كننده صفحه نمايش بسته به متن يا تصويري كه قرار است نمايش داده شود، در زمان مناسب شعاع الكتروني را روشن و خاموش مي كند. اگرچه در هر لحظه شعاع الكتروني تنها به يك نقطه مي تابد اما سرعت جاروب كردن شعاع الكترونيكي به قدري زياد است كه همه نقطه هاي تصوير به طور همزمان روشن به نظر مي رسد. در نمايشگرهاي رنگي سه تفنگ الكترونيكي با رنگ هاي قرمز، سبز و آبي وجود دارد.

هر يك از نقطه ها در سطح داخلي صفحه نمايش از قطعه فسفري قرمز، سبز و آبي تشكيل مي شود. تفنگ هاي الكترونيكي نمايشگر فقط قطعه متناظر با خود را مورد هدف قرار مي دهند. در اثر برخورد شعاع الكترونيكي ،يك قطعه نوري ،همان رنگ از آن منتشر مي شود. مدار كنترل كننده صفحه نمايش بسته به رنگ نقطه ها در زمان هاي مناسب شعاع الكترونيكي هر يك از تفنگ ها را روشن يا خاموش مي كند. در اثر تركيب رنگ ها شعاع هاي نواري منعكس شده از هر نقطه، آن نقطه را به يك رنگ خاص درمي آورد، در نتيجه با تركيب حالت هاي مختلف خاموش و روشن كردن اين سه شعاع الكترونيكي و تنظيم شدت روشنايي رنگ هاي بيشتري توليد مي شود.

نكته: اغلب صفحه هاي نمايشگر از Cathodory Tube) CRT ) استفاده مي نمايند. در صورتي كه رايانه هاي Laptop و ساير دستگاه هاي محاسباتي قابل حمل ازLCD Liquid Crتystal Display و يا LDD Light-emiting diode استفاده مي نمايند. استفاده از مانيتورهاي LCD با توجه به مزاياي عمده آنان خصوصاً مصرف انرژي پايين، آنها را به تدريج جايگزين مانيتورهاي CRT گرداند.

مواردي كه در تهيه يك مانيتور مي بايست مورد توجه قرار داد:

-
  1. تكنولوژي نمايش (CRT، LCD وموارد ديگر)
  2. - تكنولوژي كابل (VGA، DVI وموارد ديگر)
  3. - محدوده قابل مشاهده (قطر صفحه نمايش)
  4. - حداكثر ميزان وضوح تصوير (Resolution)
  5. - ميزان برق مصرفي Dot Pitch- Refresh rate - Color depth
  6. - تكنولوژي كابل يك آداپتر UXGA اطلاعات ديجيتالي ارسال شده توسط يك برنامه را اخذ مي كند و پس از ذخيره سازي آنها در حافظه ويدئويي مربوط با استفاده از يك تبديل كننده ديجيتال به آنالوگ آنها را به منظور نمايش، تبديل به سيگنال هاي آنالوگ خواهد نمود.

پس از ايجاد سيگنال هاي آنالوگ اطلاعات مربوط از طريق يك كابل VGA براي مانيتور ارسال خواهد شد. يك كانكتور VGA از سه خط مجزا براي سيگنال هاي قرمز، سبز و آبي و از دو خط ديگر براي ارسال سيگنال هاي افقي و عمودي استفاده مي كند. در تكنولوژي جديد DVI(Digital (Video Interface ضرورتي به تبديل آنالوگ به ديجيتال و بالعكس نبوده و سيگنال هاي ديجيتال مستقيماً براي مانيتور ارسال خواهند شد. باتوجه به اينكه اين تكنولوژي از كارت گرافيكي خاص خود حمايت مي نمايد.

محدوده قابل نمايش اندازه يك مانيتور با دو پارامتر مشخص مي شود:

  • اندازه صفحه و ضريب نسبت. بيشتر نمايشگرهاي رايانه نظير تلويزيون داراي ضريب نسبت ۴:۳ مي باشند، يعني اينكه نسبت پهنا به ارتفاع معادل ۴ به ۳ است.
  • اندازه صفحه برحسب اينچ اندازه گيري شده و معادل قطر نمايشگر است.
  • اندازه نمايشگرهاي Notebook اغلب كوچكتر بوده و داراي دامنه بين ۱۲ تا ۱۵ اينچ مي باشند.
  • اندازه نمايشگر به طور معمول تأثير مستقيمي بر روي وضوح تصوير خواهد داشت، يعني يك تصوير بر روي مانيتور ۲۱ اينچ با وضوح تصوير ۴۸۰*۶۴۰ به خوبي مشاهده تصوير بر روي يك مانيتور ۱۵ اينچ با همان وضوح تصوير نخواهد بود.

در نتيجه مشاهده تصوير بر روي يك مانيتور با ابعاد كوچك كيفيت بالاتري خواهد داشت. نكته: اغلب اوقات اندازه واقعي قطر صفحه نمايش از اعداد ذكرشده كوچك تر است به عنوان مثال قطر واقعي يك نمايشگر ۱۵ اينچ ممكن است ۸/۱۳ اينچ باشد و يا قطر صفحه نمايش نمايشگر ۱۷ اينچ ممكن است حدود ۸/۱۵ اينچ باشد.
 

Mehdi

متخصص بخش سخت افزار
قسمت شانزدهم: نمایشگر (قسمت2)

عمق رنگ (Color Depth) رنگ هايي كه يك مانيتور نشان مي دهد از تركيب حالات كارت گرافيكي و قابليت رنگ در مانيتور، بدست مي آيد، مثلا كارت SVGA، قادر به نمايش ۱۶۷۷۷۲۱۶ رنگ مي باشد و اين كارت مي تواند اعداد ۲۴ بيتي تشريح كننده يك پيكسل را پردازش نمايد. تعداد بيت هاي استفاده شده براي تشريح يك پيكسل عمق بيت نام دارد. عمق بيت را True color نيز مي گويند. در ۲۴ بيت جهت تشريح هر پيكسل براي هر يك از رنگ هاي اصلي (قرمز - سبز - آبي) از ۸ بيت استفاده مي شود. در چنين مواردي امكان توليد ۱۰ ميليون رنگ وجود دارد. يك كارت ۱۶ بيتي قادر به توليد ۶۵۵۳۶ رنگ مي باشد.

در حال حاضر از ۳۲ بيت جهت تشريح يك پيكسل استفاده مي شود، كه اين مدل در دوربين هاي ديجيتال، انيميشن و بازي هاي ويدئويي به كار مي رود. مصرف انرژي تكنولوژي مورد استفاده در مانيتورها ميزان مصرف انرژي آن ها را تعيين مي كند. نمايشگرهاي CRT از ۱۱۰ وات استفاده مي نمايند، اما مانيتورهايي با تكنولوژي LCD از ۳۰ تا ۴۰ وات انرژي استفاده مي نمايند.

نمايشگرهاي هوشمند داراي ۴ مرحله كاري هستند كه مصرف برق را در آن ها بتدريج كم مي كنند.

۱- حالت روشن و عملياتي: در اين مرحله چه نمايشگر در حال كار باشد و چه برنامه محافظ صفحه نمايش در حال اجرا، بيشترين برق مصرف مي شود.
۲- مرحله آماده باش(standby ):اين مرحله تنها ۵۰ درصد برق كمتر مصرف مي كند و به سرعت به ورودي ها پاسخ مي دهد.
۳- مرحله خواب يا تعليق (suspend): در اين حالت لامپ تصوير در عمل خاموش است و نمايشگر ۱۰ تا ۱۵ وات برق مصرف مي كند و اگر كليدي را فشار دهيد نمايشگر به آهستگي روشن مي شود.
۴- مرحله خاموشي: آخرين حالت مرحله خاموشي است كه در اين مرحله عمل خاموشي به طور فيزيكي بوسيله كاربر با كليدهاي خاموش و روشن صورت نگرفته است، بلكه مدارهاي داخلي هنوز فعال هستند و نمايشگر ۳ تا ۷ وات برق مصرف مي نمايد.

جهت فعال كردن امكان صرفه جويي در مصرف برق در نمايشگرها، در ويندوز مراحل زير را انجام دهيد:

از control Panel، ِِِDisplay را انتخاب نماييد، سپس وارد Display Properties شويد و Screen Server را انتخاب كنيد. در اين برگه در Energy ، Setting را انتخاب نماييد. براي انتخاب الگوي انرژي، Power schemes و براي رايانه شخصي Home/Office desk و جهت رايانه هاي كيفي و كتابي Portable/laptop را برگزينيد. در گزينه Turn off Monitor زماني را كه بعد از آن نمايشگر بايد به حالت كم مصرفي برسد انتخاب نماييد. اگر Never را انتخاب كنيد خصوصيات صرفه جويي در انرژي غيرفعال خواهد شد. در جلوي گزينه System Standby مي توانيد زمان بي كاري رايانه را تعريف كنيد تا پس از آن سيستم به حالت آماده به كار در آيد. در قسمت Turn off Hard disks نيز مي توانيد ديسك سخت را در مواقع بي كاري غيرفعال نماييد. خطرات كار با نمايشگرها بسياري از كارخانه هاي سازنده نمايشگر، ميزان خطرات زيان آور نمايشگر را جهت رقابت با ساير كارخانه ها كاهش مي دهند.

اين خطرات شامل:

  1. - پرتوهاي اشعه ايكس
  2. - پرتوهاي اشعه ماورابنفش
  3. - ميدان هاي الكتريكي با ولتاژ بال
  4. - ميدان هاي الكترومغناطيسي
  5. - امواج الكترومغناطيسي فركانس پايين و بالا گفته مي شود انواع ناهنجاري هاي كرموزومي و بيماري هاي ژنتيكي، سرطان ها، اختلال در ديد چشم، ضايعات عصبي و رواني، سقط جنين و... از عوارض اين پرتوها هستند.

لازم است براي مقابله با اين خطرات روش هاي زير را به كار بريد:

  1. - از عينك ها يا فيلترهاي مرغوب استفاده نماييد.
  2. - نمايشگر را تحت زاويه ۲۰ درجه از بالا يا پايين با چشم قرار دهيد.
  3. - فاصله نمايشگر تا چشم را ۴۰ تا ۷۰ سانتي متر تنظيم نماييد.
  4. - در محل استفاده از رايانه از لامپ هاي قوي استفاده نكنيد و تا آن جا كه ممكن است نورهاي طبيعي را به كار بريد.
  5. - درخشندگي صفحه نمايش را كاهش دهيد، لامپ هايي را كه به صورت مستقيم به صفحه نمايش مي تابند خاموش كنيد، نمايشگر را رو به پنجره نگذاريد.
  6. - مدت زمان طولاني در مقابل نمايشگر روشن ننشينيد. بدنه رايانه ها و نمايشگرها بوي مخصوصي از خود متصاعد مي كنند كه اين بو ناشي از گازهاي «يوكسين» و «فوران» مي باشد كه به عنوان مواد ضد حريق در بدنه نمايشگرها و كارت ها به كار مي روند، كه هر دو سرطان زا هستند.

اين گازها هنگام آتش سوزي پراكنده مي شوند اما در دماي معمولي نيز متصاعد مي گردند، بنابراين بهتر است به طور منظم و در فواصل مشخص هواي محيط را تغيير دهيد. حداكثر وضوح و دقت تصوير دقت (Resolution) به تعداد پيكسل هاي نمايشگر اطلاق مي گردد. دقت تصوير توسط تعداد پيكسل ها در سطر و ستون مشخص مي گردد. مثلاً يك نمايشگر با دارا بودن ۱۲۸۰ سطر و ۱۰۲۴ قادر به نمايش ۱۰۲۴*۱۲۸۰ پيكسل خواهد بود.

كارت فوق دقت تصوير در سطوح پايين تر يعني ۷۶۸*۱۰۲۴، ۶۰۰*۸۰۰ و ۴۸۰*۶۴۰ را نيز حمايت خواهد نمود. Refresh Rate (نرخ بازخواني/ بازنويسي) در مانيتورها با تكنولوژي CRT نرخ بازخواني / بازنويسي نشان دهنده تعداد دفعات نمايش تصوير در يك ثانيه است، در صورتي كه مانيتور CRT داراي نرخ بازخواني / بازنويسي ۷۲ هرتز مي باشد در هر ثانيه ۷۲ مرتبه تمام پيكسل ها از بالا به پايين بازخواني / بازنويسي مجدد خواهد شد. اين نرخ بسيار حائز اهميت است و هر اندازه كه بيشتر باشد تصوير مناسب تر خواهد بود، (تصويري عاري از هرگونه لرزش.) در صورتي كه نرخ فوق بسيار پايين باشد باعث لرزش نوشته هاي موجود در صفحه نمايش شده و بيماري هاي مختلف چشم و سردردهاي متوالي را در پي خواهد داشت.
 

laptapiran.com

کاربر ويژه
با اجازه اقا مهدی

آشنایی مقدماتی با بخش های مختلف مادربرد
برد اصلی (Mother Board)، کارتی الکترونیکی است که اکثر قطعات اساسی رایانه بر روی آن قرار می‌گیرد و دیگر قطعات نیز معمولاً با استفاده از رابط‌های مختص خود برای اتصال به دیگر قطعات و بخش‌ها به این کارت الکترونیک اتصال می‌یابند.

[h=2]قسمت‌های مختلف Mother Board هر مادربردی جدا از مدل و شرکت سازنده خود قسمت اصلی متفاوتی دارد که در زیر با آن‌ها آشنایی پیدا می‌کنیم. این اطلاعات در هنگام بستن ( اسمبل ) کردن یک سیستم می تواند کمک زیادی به شما بکند. پیشنهاد می‌کنیم درب کناری Case یا جعبه سیستم خود را در هنگام خواندن هر یک از این موارد باز کنید و جای هر یک از قسمت‌ها را بر روی سیستم فعلی خود نیز مشاهده کنید. در تصاویر زیر ما از مادربود ASUS M4A88T-V EVO/USB3 برای نمایش هر یک از قسمت‌ها استفاده کرده‌ایم.

mother-board.jpg


۱. Socket CPU : محل قرار گرفتن CPU که نوع سوکت آن با توجه به نسل‌های تولید ریز پردازنده CPU مختلف می‌باشد که برای نمونه می‌توان به LGA 1155 ، AM3 ، FM1 و … اشاره کرد. در کنار این محل همانطور که می بینید با توجه به نوع سوکت CPU قطعه ای برای بستن فن خنک کننده بر روی CPU نیز وجود دارد.

۲. RAM Slot : بر روی Mother Board شکاف‌هایی برای قرار دادن کارتهای RAM قرار داده می‌شود که این محل با توجه . در دو طرف این اسلت ها گیره‌هایی قرار گرفته که باعث استحکام RAM در شکاف می‌شود.

۳. PCI Slot : بر روی Mother Board شکاف‌هایی برای کارت‌های گوناگون (کارت صدا – مودم – کارت TV …) قرار دارد. نام این اسلت PCI (Peripheral Component Interconnector) می‌باشد.

۴. AGP & PCI Express Slot : محل قرار گرفتن کارت گرافیک بر روی Mother Board می‌باشد.

۵. IDE Connector : انواع Hard Disk و CD Drive به وسیله این کانکتور به Mother Board متصل می‌شود.

۶. SATA Connector : انواع Hard Disk و CD Drive های SATA به وسیله این کانکتور به Mother Board متصل می‌شود. این کانکتور در Mother Board های جدید قرار دارند.

۷. FDD Connector : کانکتور FDD برای اتصال کابل FDD به Mother Board استفاده می‌شود. البته هانطور که می دانید به دلیل استفاده کم از فلاپی دیسک ها این روزها دیگر در اکثر مادربردها این Connector یافت نمی‌شود و شما برای استفاده از فلاپی دیسک های خود در سیستم جدید مجبور هستید از فلاپی دیسک خوان‌هایی استفاده کنید که از طریق USB به مادربورد شما متصل می‌شوند.

۸. Power Connector : در Case کامپیوتر منبع تغذیه ای وجود دارد که دارای خروجی‌هایی جهت تغذیه برق قسمت‌های مختلف می‌باشد. خروجی مخصوص Mother Board در قسمت Power Connector ( محل اتصال منبع تغذیه ) وصل می‌شود.

۹. Front Panel Jumper : محل اتصال چراغ و کلیدهای روشن/خاموش ( Power ) و راه اندازی مجدد ( Restart ) جلوی کیس می‌باشد. برای اتصال صحیح این قسمت به سیم های مربوطه می توانید از کلمات اختصاری که در کنار آن بر روی مادربورد نوشته شده است استفاده کنید و یا از دفترچه راهنما مادربورد خود استفاده کنید.

۱۰. باتری Back up : برخی از تنظیم‌های روی مادر برد باید در هنگام قطع برق نیز حفظ شود که این تنظیمات عبارتند از ساعت ، کلمه عبور ، تنظیمات Boot سیستم و … یک باتری به نام باتری پشتیبان (Battery Back up) تعبیه شده است که ولتاژ خروجی آن ۳ ولت می‌باشد. همچنین در کنار این باتری معمولاً چند سوزن ( Jumper ) قرار دارد که با اتصال آن ها به یکدیگر می توانید این تنظمات را به حالت پیش فرض ( تنظیمات کارخانه ) برگردانید.

۱۱. درگاه (Port I/O) : این درگاه‌ها بعد از نصب Mother Board در داخل Case ، پشت Case I/O Back Panel قرار دارند. در زیر با این درگاه ( Port ) آشنایی بیشتری پیدا می‌کنیم.

[h=2]معرفی درگاه ورودی/خروجی پشت Case همانطور که در بالا بررسی کردیم در مادربردها چند درگاه ورودی/خروجی وجود دارد که از پشت Case کاربر می‌تواند به آن‌ها دسترسی داشته باشد. در لیست زیر با درگاه رایج که در این پنل وجود دارند آشنا می‌شویم.

back-panel-mother-board.jpg


الف ) درگاه PS/2 : جهت اتصال موس و صفحه کلید ( Keyboard ) معمولاً از درگاه PS/2 و یا USB که در زیر با آن آشنا می شویم استفاده می‌شود. البته اکثر موس و صفحه کلید امروزی از درگاه USB استفاده می کنند تا با سرعت و کیفیت بهتری بتوانند با سیستم شما ارتباط برقرار کنند.

ب ) درگاه موازی : جهت ورود و خروج اطلاعات به صورت ۸ بیتی عمل می کندکه نام آن LPT می‌باشد. به عنوان مثال چاپگر و اسکنر قدیمی به وسیله پورت LPT به Mother Board وصل می‌شود. البته این درگاه نیز در اکثر مادربورد جدید یافت نمی‌شود اما در گذشته این درگاه به عنوان بهترین راه ارتباط سیستم با دیگر دستگاه ها و برنامه ریزی آن ها از این طریق بوده است.

پ ) درگاه سریال : جهت ورود و خروج اطلاعات به صورت یک بیتی عمل می‌کند که نام آن COM می‌باشد. به عنوان مثال موس و مودم External قدیمی به وسیله پورت COM به Mother Board وصل می‌شود.

ت ) درگاه USB : جهت اتصال دستگاه‌ها و لوازم جانبی رایانه که با کابل USB کار می‌کنند، می‌باشد. به عنوان مثال صفحه کلید ، موس ، چاپگر ، اسکنر ، دوربین دیجیتال و … به وسیله کابل رابط USB به این درگاه وصل می‌شود. این درگاه البته نسخه های متفاوتی نیز دارد مانند USB 3 که در نسخه های مختلف آن سرعت انتقال اطلاعات و همچنین پهنای باند متفاوت است.

ث ) درگاه LAN : جهت اتصال به شبکه های کامپیوتری (داخلی) ، مودم ADSL و دیگر دستگاه های مرتبط با شبکه از این درگاه استفاده می‌شود که با توجه به نسخه آن می تواند به شما اجازه دریافت اطلاعات با سرعت ۱۰ – ۱۰۰ – ۱۰۰۰ و … بدهد.

ج ) درگاه های ورودی و خروجی صدا : خروجی آن جهت اتصال اسپیکر و ورودی آن جهت اتصال میکروفون استفاده می‌شود.

چ ) درگاه خروجی مانیتور : این درگاه در های دارای کارت گرافیک On board جهت اتصال کابل دیتا مانیتور به Mother Board می‌باشد. در بعضی از مادربردها از پورت VGA و یا DVI Port در کنار آن به این منظور استفاده شده است و حتی مادربرد مدرن از درگاه خروجی HDMI در این قسمت استفاده می شود که شما می توانید با استفاده از آن کیفیت تصاویر دریافتی از کارت گرافیک On board مادربورد خود را افزایش دهید.

ح ) درگاه eSATA : نام این درگاه مخفف External SATA است که با استفاده از آن می توانید هارد دیسک خارجی و قابل حمل خود را به سیستم بدون نیاز به باز کردن درب Case اتصال دهید.

توجه داشته باشید که در این مقاله ما تنها به بررسی و آشنایی با قسمت عمومی یک مادربورد پرداختیم و در واقعیت هر مادربورد از بخش های خیلی بیشتری استفاده می‌کنند.
 
بالا