عدد في (phi)ا Ф
Ф = 1.618
1.61803398874989484
ترسیم مستطیل طلایی
حيوانات، گياهان و حتي انسان ها همگي با دقتي بسيار بالا وجوهي از ضرايب في به يك مي باشند. دانشمندان قديم 1/618را نسبت الهي عنوان كرده اند. براي آشنايي بيشتر با اين نسبت به چند نمونه ي زير توجه كنيد: در يك كندوي عسل هميشه تعداد زنبورهاي ماده از نرها بيشتر است. حال اگر تعداد زنبورهاي ماده را به نر تقسيم كنيم در هر كندويي در هر گوشه ي دنيا يك عدد ثابت بدست مي آيد. كه همان في است. نسبت قطر مارپيچ هاي حلزون نيز نسبت 1.618 به يك را دارد تخمه هاي آفتابگردان به شكل مارپيچ هايي روبروي هم رشد مي كنند. نسبت قطر هر دايره به دايره بعدي 1.618 مي باشد. نسبت طولي و عرضي خال هاي پروانه ها، نسبت في است شاخ و برگ درخت ها به صورت تصادفی در جهات مختلف رشد نمی کنند. اندازه گیری زاویه شاخه ها نشان می دهد که در الگوی رشد آن ها، نظمی شبیه دنباله فیبوناچی و نسبت طلایی وجود دارد. درختان با پیروی از این نوع الگوی رشد، قادرند درصد بیشتری از نور خورشید را جذب کنند. داوينچي اولين كسي بود كه نسبت دقيق استخوان هاي انسان را اندازه گيري نمود و ثابت كرد كه اين تناسبات با ضريب عدد في هستند. در بدن انسان مثالهای بسیار فراوانی از این نسبت طلایی وجود دارد. در شکل زیر نسبت M/m یک نسبت طلایی است که در جای جای بدن انسان می توان آنرا دید. به عنوان مثال نقاطی از بدن که دارای نسبت طلایی هستند: نسبت قد انسان به فاصله ناف تا پاشنه پا نسبت فاصله نوک انگشتان تا آرنج به فاصله مچ تا آرنج نسبت فاصله شانه تا بالای سر به اندازه سر نسبت فاصله ناف تا بالای سر به فاصله شانه تا بالای سر نسبت فاصله ناف تا زانو به فاصله زانو تا پاشنه پا فاصله سر تا زمين را به فاصله ي شكم تا زمين فاصله شانه ها تا نوك انگشت تقسيم بر فاصله آرنج تا نوك انگشت هم بيانگر عدد في مي باشد. نمونه هاي ديگر: باسن تا زمين تقسيم بر زانو تا زمين مفاصل انگشتان... تقسيمات ستون فقرات و ... اینها تنها چند مثال از وجود نسبت طلایی در بدن انسان بود که بدن انسان را در حد کمال زیبایی خود نشان می دهد همان طور كه مي دانيد DNA زنجيره ي حياتي هر موجودي است كه در آن كليه اطلاعات آن موجود بصورت كد و زنجيروار قرار دارد. 34آنگستروم طول و 21 آنگستروم پهنا دارد. و 34 و 21 جزو اعداد سري فيبوناچي هستند و تقسيم آنها بر يكديگر عدد 1.61904 را نشان مي دهد كه كاملا نزديك 1.6180339 مي باشد. نسبت طول ضلع پنج پر منتظم به طول ضلع پنج ضلعی منتظم برابر همین عدد است. روانشناسان هم بر این باورند زیباترین مستطیل به دید انسان، مستطیلی است که نسبت طول به عرض آن برابر عدد طلایی باشد. [h=2]نسبت طلایی در ایران برج و میدان آزادی :طول بنا ۶۳ و عرض ان ۴۲ است که به عدد طلایی نزدیک قلعه دالاهو، کرمانشاه :خطی از استحکامات به طول دو و نیم کیلومتر و عرض چهار متر با قلوه و لاشه سنگ به همراه ملات دیوار گچ را می سازد. سرتاسر نمای خارجی این دیوار با مجموعهای از برجهای نیم دایرهای شکل تقویت شده است. که نسبت 5/2 به4 همان عدد طلایی است. بیستون از دوره هخامنشی، کرمانشاه:به طول ۵ کیلومتر و عرض ۳ کیلومتراست.اعداد۵و۳هردوجزودنباله فیبوناتچی هستندو1/6=۵:۳ و ابعاد برجسته کاری ۱۸ در ۱۰ پاست که قامت "داریوش"۵ پا و ۸ اینچ (۱۷۰ سانتیمتر)بلندی داردکه هر دو اعداد فیبوناتچی هستند پل ورسک در مازندران : این پل بر روی رودخانه ورسک در مجاورت سواد کوه بنا شد.بلندی این پل ۱۱۰ متر است وطول قوس آن ۶۶ متر میباشد(1/6 = ۶۶ : ۱۱۰ ). مقبره ابن سینا: آرامگاه دروسط تالاری مربع شکل قرارگرفته که پله مدور(مارپیچ فیبوناتچی) و پایههای دوازده گانه برج را احاطه کرده اند .سطح حیاط باسه پله سراسری به ایوان متصل است.ایوان با دری به ارتفاع 3/2 متر و عرض 1/9متر به سرسرای آرامگاه متصل است . در دو طرف سرسرا دو تالار قرار دارد یکی در جنوب که تالار سخنرانی و اجتماعات است.و یکی در شمال که کتابخانه آرامگاه است.طول تالار کتابخانه 9/45 متر وعرض آن 5/75 متر است ارگ بم :این بنا ۳۰۰ متر طول و ۲۰۰ متر عرض داشته و از ۲ قسمت تشکیل شده است. این دﮋ ۵ شیوه ساختاری از خشت خام دارد . (۳ و ۲ و ۵ اعداد دنباله فیبوناتچی هستند) میدان نقش جهان و مسجد لطف الله :در کتب اخیر، نویسنده جیسون الیوت بر این باور است که نسبت طلایی توسط طراحان میدان نقش جهان و در مجاورت مسجد لطف الله مورد استفاده قرار گرفته است. پاره خطی را در نظر بگیرید و فرض کنید که آنرا بگونه ای تقسیم کنید که نسبت بزرگ به کوچک معادل نسبت کل پاره خط به قسمت بزرگ باشد. به شکل توجه کنید. اگر این معادله ساده یعنی a[SUP]2[/SUP]=a*b+b[SUP]2[/SUP] را حل کنیم (کافی است بجای b عدد یک قرار دهیم بعد a را بدست آوریم) به نسبتی معادل تقریبا” 1.61803399 یا 1.618 خواهیم رسید. شاید باور نکنید اما بسیاری از طراحان و معماران بزرگ برای طراحی محصولات خود امروز از این نسبت طلایی استفاده می کنند. چرا که بنظر میرسد ذهن انسان با این نسبت انس دارد و راحت تر آنرا می پذیرد. این نسبت نه تنها توسط معماران و مهندسان برای طراحی استفاده می شود بلکه در طبیعت نیز کاربردهای بسیاری دارد که به تدریج راجع به آن صحبت خواهیم کرد. اهرام مصر یکی از قدیمی ترین ساخته های بشری است که در آن هندسه و ریاضیات بکار رفته شده است. مجموعه اهرام Giza در مصر که قدمت آنها به بیش از 2500 سال پیش از میلاد می رسد یکی از شاهکارهای بشری است که در آن نسبت طلایی بکار رفته است. مثلث قائم الزاویه ای که با نسبت های این هرم شکل گرفته شده باشد به مثلث قائم مصری یا Egyptian Triangle معروف هست و جالب اینجاست که بدانید نسبت وتر به ضلع هم کف هرم معادل با نسبت طلایی یعنی دقیقا” 1.61804 می باشد. این نسبت با عدد طلایی تنها در رقم پنجم اعشار اختلاف دارد یعنی چیزی حدود یک صد هزارم. باز توجه شما را به این نکته جلب می کنیم که اگر معادله فیثاغورث را برای این مثلث قائم الزاویه بنویسم به معادله ای مانند phi[SUP]2[/SUP]=phi+b[SUP]2[/SUP] خواهیم رسید که حاصل جواب آن همان عدد معروف طلایی خواهد بود. (معمولا” عدد طلایی را با phi نمایش می دهند) طول وتر برای هرم واقعی حدود 356 متر و طول ضلع مربع قاعده حدودا” معادل 440 متر می باشد بنابر این نسبت 356 بر 220 (معادل نیم ضلع مربع) برابر با عدد 1.618 خواهد شد. کپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونه ای که در یکی از کتابهای خود اینگونه نوشت : “هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه فیثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلایی می باشد. اولین گنج را می توان به طلا و دومی را به جواهر تشبیه کرد”. تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد. کپلر پی به روابط بسیار زیبایی میان اجرام آسمانی و این نسبت طلایی پیدا کرد. مارپیچ فیبوناچی
به شکل زیر نگاه کنید و ببینید که به چه زیبایی از کنار هم قرار دادن تعدادی مربع می توان رشته فیبو ناچی را بصورت هندسی نمایش داد. حال اگر در هر یک از این مربع ها از نقاط قرمز ربع دایره هایی رسم کنیم در نهایب به نوعی از مارپیچ حلزونی شکل می رسیم که به مارپیچ فیبوناچی (Fibonacci Spiral) معروف می باشد. بدیهی است که نرخ رشد و باز شدن این مارپیچ متناسب با نرخ بزرگ شدن اعداد در سری فیبوناچی می باشد.سری فیبوناچی چه در ریاضیات چه در فیزک و علوم طبیعی کاربردهای بسیار دیگری دارد، ارتباط زیبای فاصله های خوش صدا در موسیقی، چگونگی تولد یک کهکشان و … که کاربرد این سری جادویی را بیش از پیش نشان می دهد. گردبادها و منظومه ها در مسیری مشابه با مارپیچ فیبوناچی حرکت می کنند.نسبت قطر مارپیچ بزرگتر به مارپیچ کوچکتر در یک گردباد برابر با 1.618 است. در کهکشان ها هم نسبت قطر مارپیچ بزرگتر به مارپیچ کوچکترهمان عدد شگفت انگیز فی است. وقتی که سنگ هاى آسمانى با سطح زمين برخورد مى کنند، مسيرى شبیه مارپیچ فیبوناچی را طى مى کنند. عنکبوت ها شبکه تارهاى خودشان را براساس الگویی شبیه به مارپیچ فیبوناچی می تنند. ميوه های درخت کاج، موج هاى اقيانوس ها، سرخس ها، شاخ جانوران و چيدمان گل های مرواريد همگی از الگوی منحنی های این مارپیچ مرموز تبعیت می کنند. اگر مارپیچ فیبوناچی را کامل رسم کنیم به مارپیچی می رسیم که ابتدا و انتهای آن نامعلوم است، این مارپیچ از هر دو طرف تا بی نهایت پیش می رود و هرگز به آخر نمی رسد. نمیدانیم 1.618 لابلای مارپیچ های آفتابگردان و انحنای ظریف میوه های کاج چه می کند و حضورش به دنبال کدام اسم رمز الهی است اما می اندیشیم دو بی نهایتی که مارپیچ فیبوناچی در آن جا خوش کرده بسیار شبیه سرنوشت آدم هاست که بین دو بی نهایت هستی گم شده اند؛ بین یک آغاز و یک پایان… [h=2]عدد في و معماري اسلامي گفته میشود که : "اگر فاصله کعبه را در شهر مکه تا قطب شمال و جنوب اندازه گرفته و به هم تقسیم کنید عدد فی بدست خواهد آمد.برای اطمینان می توانید از نرم افزار Google Earth استفاده کنید و به این حقیقت دست یابید." کعبه در لتیتودِ ۲۱.۴۲۲۴۹۴۵ میباشد که به تناسبِ (90-21.4224945)/(90+21.4224945) برابر با 1.62476739 میباشد که با عددِ فی تطابق دارد. تاكنون نه تنها در كتاب رمز داوینچی بلکه پیامها، اسرار مذهبی و كهن در دیوارهای زیارتگاههای اسلامی به صورت رمز قرار مشاهده شده است.بسیاری از كاشیكاریهای بناهای اسلامی متعلق به ۵۰۰سال پیش توانستهاند الگوهای فراوان ریاضی پیدا كنند كه تا دهه ۱۹۷۰ برای غربیها ناشناخته بوده است.اساس یک طراحی هندسی برای نشان دادن یک نماد از علم " ماندالا" است که به عقیده بسیاری از ملت شرق به تعمق و اندیشه کمک می کند خلق بسیاری از نامحدود ها با استفاده از مثلث و مستطیل طلایی از این گونه است كیث كریچلو" keith Critchlowنویسنده كتاب "الگوهای ریاضی اسلامی" چنین ادعا می کند: ما دریافتهایم كه اسلام در دوره قرون وسطی تا چه اندازه پیشرفته بوده است. نام این الگوهای ریاضی پیچیده در آن دوران "شیمی بیضی متقارن ممنوعه" مینامند.آنها از الگوی كاشیهای هرمی برخوردارند و با چرخش یك سوم در آن قابل شناسایی هستند.همین قانون برای كاشیهای مستطیلی نیز پیروی میكند كه با چرخش یك چهارم قابل شناسایی هستند ما برای كاشیهای شش گوش چرخش یك ششم لازم است. اما این شبكهها بدون وجود پنجظلعیها كامل نمیشوند و بدون رعایت فاصله میان آنها در كنار هم جفت نمیشوند و نمیتوان آنها را با با چرخش یك پنجم در كنار هم قرار داد.آقای لو توانست در دیوار یكی از زیارتگاههای ایران دو نوع از این كاشیكاریها بزرگ را كه با كاشیهای همشكل ساخته شده بود، كشف كند به گونهای كه ظاهرا از نسبت طلایی فیثاغورثی تبعیت میكردند.كریچلو در اینباره میگوید:سازندگان بنا بطور حتم از این نسبت خبر داشتند. در سال ۱۹۷۳سر "راجر پنروس" Roger Penroseریاضیدان برجسته غربی توانست با در نظر گرفتن این پنجظلعیها الگویی پنج تایی با شكلی بسازد كه از آن به عنوان كیت و یا دارت نام برده میشود. او نخستین غربی بود كه این حساب را كشف كرد و در آن زمان گمان میكرد نخستین كسی است به این موضوع پی بردهاست.خلاقیت وی به خلق خواص ریاضیاتی منجر شد هر دسته میتواند حاوی تعداد مشخصیاز كیتها و دارتهایی باشد كه میتوانند تا بینهایت و بدون تكرارپذیری الگوهای كوچكتری از كیتها و دارتها بسازند.هر چقدر تعداد این اشكال ریز افزایش پیدا كند آنگاه نسبت كیتها به دارتها به نسبتی موسوم به "نسبت طلایی" میرسد. "گلرو نجیب اوغلو" Gulru Nacipogluیكی از اساتید دانشگاه هاروارد میگوید:خلقت انسان مشابه هم است و شكل مشخصی دارد كه از عجایب خلقت خداوندی است این كه این الگوها به كجا ختم میشوند و به صورت هوشمندانهای در درها و پنجرهها به كار رفتهاند مسئلهای است كه نمیتوان مشخص كرد.به گفته وی، با وجود این كه الگوی پنروس به قرن ۱۴یا ۱۵بازمیگردد اما این اشكال كاشیكاری در دنیای اسلام از صدها سال قبل از آن به كار گرفته شده است. در منبتكاریهای ایران در قرن پانزدهم و اوایل شانزدهم فهرستی از بسیاری از این طرحها قرار دارند كه ممكن است سرنخی برای شكوه ریاضیات اسلامی در مساجد ایران و تركیه و مدارس بغداد و زیارتگاههای هند و افغانستان باشد.دانشمندان اكنون میدانند كه مسلمانان در آن دوران میتوانستند معادلات جبری به توان ۳و فراتر از آن را حل كنند معادلاتی كه بسیار دشوارتر از معادله دو مجهولی است و اساس جبر به شمار میرود. مسلمانان همچنین دارای حسابگرهای مكانیكی بودند و در علم داروشناسی و ستاره شناسی پیشرفتهتر از اروپاییها بودهاند اما با این حال جای تاسف است كه تعداد اندكی از این دانشمندان درباره یافتههای خود كتاب و یا اثر به رشته تحریر درآوردهاند". کپلر (Johannes Kepler 1571-1630) منجم معروف نیز علاقه بسیاری به نسبت طلایی داشت بگونه ای که در یکی از کتابهای خود اینگونه نوشت : “هندسه دارای دو گنج بسیار با اهمیت می باشد که یکی از آنها قضیه فیثاغورث و دومی رابطه تقسیم یک پاره خط با نسبت طلایی می باشد. اولین گنج را می توان به طلا و دومی را به جواهر تشبیه کرد”. تحقیقاتی که کپلر راجع به مثلثی که اضلاع آن به نسبت اضلاع مثلث مصری باشد به حدی بود که امروزه این مثلث به مثلث کپلر نیز معروف می باشد
.
منابع : وبلاگ علمی ایران دانش