[h=2]ساختمان راکتور گداخت هسته ای
2-راکتورهای محصورکننده پلاسما با روش لختی.
ساختار این دو گروه راکتور تفاوت چندانی با هم ندارد.
راکتورهای گداخت هستهای که در آنها پلاسما به روش مغناطیسی محصور شدهاست بر این اساس که میدان مغناطیسی تمام یا قسمتی از سطح پلاسما را بپوشاند، به دو گروه چنبرهای ( Torus type) و انتها باز (Open-end type ) تقسیم شدهاند. همچنین بنابر نوع عملکرد راکتورها آنها را میتوان به انواع پایا، شبه پایا و تپی نیز طبقه بندی کرد.
در مرکز یک راکتور D-T گداخت، پلاسمایی با دمای بالا شامل 50% دوتریم و 50% تریتیم قرار دارد. پلاسما در دمای زیاد باید از حداقل ناخالصی برخوردار باشد، این پلاسما توسط میدان مغناطیسی در محفظه خلأ محصور می شود.
دیواره محفظه که با پلاسما در تماس است، اولین دیواره(دیواره اولیه) نامیده میشود. ذرات پلاسما با انرژی زیاد به این دیواره برخورد میکنند. این ذرات قادرند در این دیواره تخریب بهوجودآورند، که خود از عمر دیواره میکاهد و پلاسما را آلوده میکند. جهت جلوگیری از این تخریب از یک منحرفکننده یا پوشش گازی استفاده میشود.
انرژی ذرات آلفای حاصل از واکنش D-T در حدودMeV 5/3 است. از آنجا که این ذرات دارای بار الکتریکی هستند، توسط میدان مغناطیسی مهار شده، انرژی خود را در برخورد با پلاسما از دست میدهند و از پلاسمای مرکزی جدا میشوند. ذرات نوترون خنثی با انرژی eV 1/4 از دیگر محصولات گداخت میباشد که از دیواره اولیه عبور کرده و جذب پوششی در پشت آن میشوند و انرژی خود را به شکل حرارت جهت تولید تریتیم که برای سوخت در راکتور مصرف میشود، از دست خواهند داد.
پوشش توسط یک لایه حفاظتی احاطه شدهاست که مانع خروج نوترونها و اشعه گاما میشود. پیچه مغناطیس ابررسانا نیز در خارج لایه حفاظتی، محصورسازی پلاسما را در مرکز راکتور امکانپذیر میکند. سیستم خنککننده راکتور، انرژی حرارتی جذبشده در پوشش را جهت سردشدن به مبدل حرارتی هدایت میکند. تریتیم تولیدی در پوشش، و تریتیم و دوتریم مصرفنشده، که از پلاسمای مرکزی پخش شدهاند از طریق سیستم بازیابی جمعآوری و جدا میشوند. مغناطیس ابررسانا توسط یک سیستم برودتی خنک میشود، پلاسمای مرکزی تا دمای لازم برای گداخت با یک سیستم حرارتی گرم میشود. به علاوه راکتور یک سیستم سوخترسانی، یک سیستم اندازهگیری و یک سیستم کنترل دارد.
بطور کلی قسمتهای اصلی یک راکتور گداخت هستهای به اختصار عبارتند از:
1-پلاسمای مرکزی
2-دیواره اولیه و مواد ساختاری
3-لایه پوشش و لایه حفاظتی
4-پیچه های مغناطیس ابررسانا
این قسمتها مجموعاً یک راکتور را تشکیل می دهند.
ذرات آلفای که در واکنش گداخت بهوجود آمدهاند به همراه مقادیر مصرف نشده یونهای T و D در دمای بالا در اثر پخش پلاسمای مرکزی را ترک میکنند. آنها قبل از برخورد با اولین دیواره، با گاز خنثی برخوردکرده و انرژی خود را از دست میدهند و پس از اخذ الکترون خنثی شده، از محفظه راکتور خارج میشوند. به این ترتیب گاز خنثی اولین دیواره را از تخریب توسط یونهای پر انرژی حفظ خواهدکرد. ذرات پلاسمای مصرف نشده از مخفظه راکتور خارج میشوند. مؤلفه D سوخت را میتوان بهآسانی با قیمت نازل تهیه کرد، ولی مؤلفه T، یک ماده رادیواکتیو میباشد که در طبیعت موجود نیست و باید در پوشش گازی تولید شود. باید T را کاملاً بازیابی کرد و از نشت آن به جو جلوگیری به عمل آورد.
بطور کلی روشهایی که برای حفاظت بکار میروند به دو جنبه مکانیکی و غیر مکانیکی تقسیمبندی میشوند. روشهای غیرمکانیکی شامل تکنیک منحرفکننده مغناطیسی و پوشش در برابر شارش گاز است. روشهای مکانیکی نیز موقعیت سطوح حفاظتی بین پلاسما و محفظه دیواره خلأ را شامل میشود.
راکتور گداخت هستهای انرژی آزاد شده در نتیجه واکنش گداخت را بصورتی قابلاستفاده تبدیل میکند. این راکتور بر اساس روشی طراحی شدهاست که در آن پلاسما محصور میشود. هدف از ساخت یک راکتور قدرت گداخت و استفاده از انرژی حاصل، در جهت مقاصد کاربردی است. هدف اصلی این تحقیقات در سالهای گذشته یافتن روشی پایدار برای محصورسازی پلاسما در درجه حرارت بالا بودهاست. راکتورها در درجه اول به دو گروه تقسیمبندی میشوند:
1-راکتورهای محصورکننده پلاسما با روش مغناطیسی 2-راکتورهای محصورکننده پلاسما با روش لختی.
ساختار این دو گروه راکتور تفاوت چندانی با هم ندارد.
راکتورهای گداخت هستهای که در آنها پلاسما به روش مغناطیسی محصور شدهاست بر این اساس که میدان مغناطیسی تمام یا قسمتی از سطح پلاسما را بپوشاند، به دو گروه چنبرهای ( Torus type) و انتها باز (Open-end type ) تقسیم شدهاند. همچنین بنابر نوع عملکرد راکتورها آنها را میتوان به انواع پایا، شبه پایا و تپی نیز طبقه بندی کرد.
در مرکز یک راکتور D-T گداخت، پلاسمایی با دمای بالا شامل 50% دوتریم و 50% تریتیم قرار دارد. پلاسما در دمای زیاد باید از حداقل ناخالصی برخوردار باشد، این پلاسما توسط میدان مغناطیسی در محفظه خلأ محصور می شود.
دیواره محفظه که با پلاسما در تماس است، اولین دیواره(دیواره اولیه) نامیده میشود. ذرات پلاسما با انرژی زیاد به این دیواره برخورد میکنند. این ذرات قادرند در این دیواره تخریب بهوجودآورند، که خود از عمر دیواره میکاهد و پلاسما را آلوده میکند. جهت جلوگیری از این تخریب از یک منحرفکننده یا پوشش گازی استفاده میشود.
انرژی ذرات آلفای حاصل از واکنش D-T در حدودMeV 5/3 است. از آنجا که این ذرات دارای بار الکتریکی هستند، توسط میدان مغناطیسی مهار شده، انرژی خود را در برخورد با پلاسما از دست میدهند و از پلاسمای مرکزی جدا میشوند. ذرات نوترون خنثی با انرژی eV 1/4 از دیگر محصولات گداخت میباشد که از دیواره اولیه عبور کرده و جذب پوششی در پشت آن میشوند و انرژی خود را به شکل حرارت جهت تولید تریتیم که برای سوخت در راکتور مصرف میشود، از دست خواهند داد.
پوشش توسط یک لایه حفاظتی احاطه شدهاست که مانع خروج نوترونها و اشعه گاما میشود. پیچه مغناطیس ابررسانا نیز در خارج لایه حفاظتی، محصورسازی پلاسما را در مرکز راکتور امکانپذیر میکند. سیستم خنککننده راکتور، انرژی حرارتی جذبشده در پوشش را جهت سردشدن به مبدل حرارتی هدایت میکند. تریتیم تولیدی در پوشش، و تریتیم و دوتریم مصرفنشده، که از پلاسمای مرکزی پخش شدهاند از طریق سیستم بازیابی جمعآوری و جدا میشوند. مغناطیس ابررسانا توسط یک سیستم برودتی خنک میشود، پلاسمای مرکزی تا دمای لازم برای گداخت با یک سیستم حرارتی گرم میشود. به علاوه راکتور یک سیستم سوخترسانی، یک سیستم اندازهگیری و یک سیستم کنترل دارد.
بطور کلی قسمتهای اصلی یک راکتور گداخت هستهای به اختصار عبارتند از:
1-پلاسمای مرکزی
2-دیواره اولیه و مواد ساختاری
3-لایه پوشش و لایه حفاظتی
4-پیچه های مغناطیس ابررسانا
این قسمتها مجموعاً یک راکتور را تشکیل می دهند.
ذرات آلفای که در واکنش گداخت بهوجود آمدهاند به همراه مقادیر مصرف نشده یونهای T و D در دمای بالا در اثر پخش پلاسمای مرکزی را ترک میکنند. آنها قبل از برخورد با اولین دیواره، با گاز خنثی برخوردکرده و انرژی خود را از دست میدهند و پس از اخذ الکترون خنثی شده، از محفظه راکتور خارج میشوند. به این ترتیب گاز خنثی اولین دیواره را از تخریب توسط یونهای پر انرژی حفظ خواهدکرد. ذرات پلاسمای مصرف نشده از مخفظه راکتور خارج میشوند. مؤلفه D سوخت را میتوان بهآسانی با قیمت نازل تهیه کرد، ولی مؤلفه T، یک ماده رادیواکتیو میباشد که در طبیعت موجود نیست و باید در پوشش گازی تولید شود. باید T را کاملاً بازیابی کرد و از نشت آن به جو جلوگیری به عمل آورد.
بطور کلی روشهایی که برای حفاظت بکار میروند به دو جنبه مکانیکی و غیر مکانیکی تقسیمبندی میشوند. روشهای غیرمکانیکی شامل تکنیک منحرفکننده مغناطیسی و پوشش در برابر شارش گاز است. روشهای مکانیکی نیز موقعیت سطوح حفاظتی بین پلاسما و محفظه دیواره خلأ را شامل میشود.